第一次写,大家见谅 ,借鉴工学院吴彦祖
我用的STM32F103ZET6最小系统版
主函数
#include "delay.h"
#include "sys.h"
#include "oled.h"
#include "bmp.h"
#include "rtc.h"
#include "led.h"
int main()
{
delay_init();
NVIC_Configuration();
OLED_Init();
RTC_Init();
while(1)
{
OLED_ShowString(8+0,0,"20",16);
OLED_ShowNum(8+16,0,calendar.w_year,2,16);
OLED_ShowChinese(8+16+16,0,3,16); //年
OLED_ShowNum(8+16+16+16,0,calendar.w_month,2,16);
OLED_ShowChinese(8+16+16+16+16,0,4,16); //月
OLED_ShowNum(8+16+16+16+16+16,0,calendar.w_date,2,16);
OLED_ShowChinese(8+16+16+16+16+16+16,0,5,16);//日
OLED_ShowChinese(0+36,18,6,16); //星
OLED_ShowChinese(16+36,18,7,16); //期
OLED_ShowChinese(16+16+36,18,calendar.week+8,16);
OLED_ShowString(0,40," : : ",24); //左移,下移(注意上下间距),字体,大小
OLED_ShowNum(16,40,calendar.hour,2,24); //显示ASCII字符的码值
OLED_ShowNum(24+24,40,calendar.min,2,24); //显示ASCII字符的码值
OLED_ShowNum(24+24+24+12,40,calendar.sec,2,24); //显示ASCII字符的码
OLED_Refresh_Gram(); //更新显示到OLED
}
}
RTC时钟(借鉴“工学院吴彦祖”)
static void RTC_NVIC_Config(void)
{
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_InitStructure.NVIC_IRQChannel = RTC_IRQn; //RTC全局中断
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //先占优先级1位,从优先级3位
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //先占优先级0位,从优先级4位
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //使能该通道中断
NVIC_Init(&NVIC_InitStructure); //根据NVIC_InitStruct中指定的参数初始化外设NVIC寄存器
}
//实时时钟配置
//初始化RTC时钟,同时检测时钟是否工作正常
//BKP->DR1用于保存是否第一次配置的设置
//返回0:正常
//其他:错误代码
u8 RTC_Init(void)
{
//检查是不是第一次配置时钟
u8 temp=0;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR | RCC_APB1Periph_BKP, ENABLE); //使能PWR和BKP外设时钟
PWR_BackupAccessCmd(ENABLE); //使能后备寄存器访问
if (BKP_ReadBackupRegister(BKP_DR1) != 0x5054) //从指定的后备寄存器中读出数据:读出了与写入的指定数据不相乎
{
BKP_DeInit(); //复位备份区域
RCC_LSEConfig(RCC_LSE_ON); //设置外部低速晶振(LSE),使用外设低速晶振
while (RCC_GetFlagStatus(RCC_FLAG_LSERDY) == RESET&&temp<250) //检查指定的RCC标志位设置与否,等待低速晶振就绪
{
temp++;
delay_ms(10);
}
if(temp>=250)return 1;//初始化时钟失败,晶振有问题
RCC_RTCCLKConfig(RCC_RTCCLKSource_LSE); //设置RTC时钟(RTCCLK),选择LSE作为RTC时钟
RCC_RTCCLKCmd(ENABLE); //使能RTC时钟
RTC_WaitForLastTask(); //等待最近一次对RTC寄存器的写操作完成
RTC_WaitForSynchro(); //等待RTC寄存器同步
RTC_ITConfig(RTC_IT_SEC, ENABLE); //使能RTC秒中断
RTC_WaitForLastTask(); //等待最近一次对RTC寄存器的写操作完成
RTC_EnterConfigMode();/// 允许配置
RTC_SetPrescaler(32767); //设置RTC预分频的值
RTC_WaitForLastTask(); //等待最近一次对RTC寄存器的写操作完成
RTC_Set(2021,8,1,2,39,45); //设置时间
RTC_ExitConfigMode(); //退出配置模式
BKP_WriteBackupRegister(BKP_DR1, 0X5054); //向指定的后备寄存器中写入用户程序数据
}
else//系统继续计时
{
RTC_WaitForSynchro(); //等待最近一次对RTC寄存器的写操作完成
RTC_ITConfig(RTC_IT_SEC, ENABLE); //使能RTC秒中断
RTC_WaitForLastTask(); //等待最近一次对RTC寄存器的写操作完成
}
RTC_NVIC_Config();//RCT中断分组设置
RTC_Get();//更新时间
return 0; //ok
}
//RTC时钟中断
//每秒触发一次
//extern u16 tcnt;
void RTC_IRQHandler(void)
{
if (RTC_GetITStatus(RTC_IT_SEC) != RESET)//秒钟中断
{
RTC_Get();//更新时间
}
if(RTC_GetITStatus(RTC_IT_ALR)!= RESET)//闹钟中断
{
RTC_ClearITPendingBit(RTC_IT_ALR); //清闹钟中断
RTC_Get(); //更新时间
printf("Alarm Time:%d-%d-%d %d:%d:%d\n",calendar.w_year,calendar.w_month,calendar.w_date,calendar.hour,calendar.min,calendar.sec);//输出闹铃时间
}
RTC_ClearITPendingBit(RTC_IT_SEC|RTC_IT_OW); //清闹钟中断溢出
RTC_WaitForLastTask(); //等待最近一次对RTC寄存器的写操作完成
}
//判断是否是闰年函数
//月份 1 2 3 4 5 6 7 8 9 10 11 12
//闰年 31 29 31 30 31 30 31 31 30 31 30 31
//非闰年 31 28 31 30 31 30 31 31 30 31 30 31
//输入:年份
//输出:该年份是不是闰年.1,是.0,不是
u8 Is_Leap_Year(u16 year)
{
if(year%4==0) //必须能被4整除
{
if(year%100==0)
{
if(year%400==0)return 1;//如果以00结尾,还要能被400整除
else return 0;
}else return 1;
}else return 0;
}
//设置时钟
//把输入的时钟转换为秒钟
//以1970年1月1日为基准
//1970~2099年为合法年份
//返回值:0,成功;其他:错误代码.
//月份数据表
u8 const table_week[12]={0,3,3,6,1,4,6,2,5,0,3,5}; //月修正数据表
//平年的月份日期表
const u8 mon_table[12]={31,28,31,30,31,30,31,31,30,31,30,31};
u8 RTC_Set(u16 syear,u8 smon,u8 sday,u8 hour,u8 min,u8 sec)
{
u16 t;
u32 seccount=0;
if(syear<1970||syear>2099)return 1;
for(t=1970;t<syear;t++) //把所有年份的秒钟相加
{
if(Is_Leap_Year(t))seccount+=31622400;//闰年的秒钟数
else seccount+=31536000; //平年的秒钟数
}
smon-=1;
for(t=0;t<smon;t++) //把前面月份的秒钟数相加
{
seccount+=(u32)mon_table[t]*86400;//月份秒钟数相加
if(Is_Leap_Year(syear)&&t==1)seccount+=86400;//闰年2月份增加一天的秒钟数
}
seccount+=(u32)(sday-1)*86400;//把前面日期的秒钟数相加
seccount+=(u32)hour*3600;//小时秒钟数
seccount+=(u32)min*60; //分钟秒钟数
seccount+=sec;//最后的秒钟加上去
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR | RCC_APB1Periph_BKP, ENABLE); //使能PWR和BKP外设时钟
PWR_BackupAccessCmd(ENABLE); //使能RTC和后备寄存器访问
RTC_SetCounter(seccount); //设置RTC计数器的值
RTC_WaitForLastTask(); //等待最近一次对RTC寄存器的写操作完成
return 0;
}
//初始化闹钟
//以1970年1月1日为基准
//1970~2099年为合法年份
//syear,smon,sday,hour,min,sec:闹钟的年月日时分秒
//返回值:0,成功;其他:错误代码.
u8 RTC_Alarm_Set(u16 syear,u8 smon,u8 sday,u8 hour,u8 min,u8 sec)
{
u16 t;
u32 seccount=0;
if(syear<1970||syear>2099)return 1;
for(t=1970;t<syear;t++) //把所有年份的秒钟相加
{
if(Is_Leap_Year(t))seccount+=31622400;//闰年的秒钟数
else seccount+=31536000; //平年的秒钟数
}
smon-=1;
for(t=0;t<smon;t++) //把前面月份的秒钟数相加
{
seccount+=(u32)mon_table[t]*86400;//月份秒钟数相加
if(Is_Leap_Year(syear)&&t==1)seccount+=86400;//闰年2月份增加一天的秒钟数
}
seccount+=(u32)(sday-1)*86400;//把前面日期的秒钟数相加
seccount+=(u32)hour*3600;//小时秒钟数
seccount+=(u32)min*60; //分钟秒钟数
seccount+=sec;//最后的秒钟加上去
//设置时钟
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR | RCC_APB1Periph_BKP, ENABLE); //使能PWR和BKP外设时钟
PWR_BackupAccessCmd(ENABLE); //使能后备寄存器访问
//上面三步是必须的!
RTC_SetAlarm(seccount); //设置RTC计数器的值
RTC_WaitForLastTask(); //等待最近一次对RTC寄存器的写操作完成
return 0;
}
//年月日时分秒处理;
//得到当前的时间
//返回值:0,成功;其他:错误代码.
//计算时间temp1:月份 temp:天数
u8 RTC_Get(void)
{
static u16 daycnt=0;
u32 timecount=0;
u32 temp=0;
u16 temp1=0;
timecount=RTC_GetCounter();
temp=timecount/86400; //得到天数(秒钟数对应的)
if(daycnt!=temp)//超过一天了
{
daycnt=temp;
temp1=1970; //从1970年开始
while(temp>=365)
{
if(Is_Leap_Year(temp1))//是闰年
{
if(temp>=366)temp-=366;//闰年的秒钟数
else {temp1++;break;}
}
else temp-=365; //平年
temp1++;
}
calendar.w_year=temp1;//得到年份
temp1=0;
while(temp>=28)//超过了一个月
{
if(Is_Leap_Year(calendar.w_year)&&temp1==1)//当年是不是闰年/2月份
{
if(temp>=29)temp-=29;//闰年的秒钟数
else break;
}
else
{
if(temp>=mon_table[temp1])temp-=mon_table[temp1];//平年
else break;
}
temp1++;
}
calendar.w_month=temp1+1; //得到月份 temp1=0表示1月,所以这要‘1‘
calendar.w_date=temp+1; //得到日期 因为这一天还没过完,但是显示的时候要显示正常日期
}
temp=timecount%86400; //得到秒钟数
calendar.hour=temp/3600; //小时
calendar.min=(temp%3600)/60; //分钟
calendar.sec=(temp%3600)%60; //秒钟
calendar.week=RTC_Get_Week(calendar.w_year,calendar.w_month,calendar.w_date);//获取星期
return 0;
}
//获得现在是星期几
//功能描述:输入公历日期得到星期(只允许1901-2099年)
//输入参数:公历年月日
//返回值:星期号
//蔡勒公式
u8 RTC_Get_Week(u16 year,u8 month,u8 day)
{
u16 temp2;
u8 yearH,yearL;
yearH=year/100;
yearL=year%100;
// 如果为21世纪,年份数加100
if (yearH>19)
yearL+=100;
// 所过闰年数只算1900年之后的
temp2=yearL+yearL/4;
temp2=temp2%7; //得到的星期为0,1,2,3,4,5,6;0为周日
temp2=temp2+day+table_week[month-1];
if (yearL%4==0&&month<3)
temp2--;
return(temp2%7);
}
RTC头文件
#ifndef __RTC_H
#define __RTC_H
#include "stm32f10x.h"
//时间结构体
typedef struct
{
vu8 hour;
vu8 min;
vu8 sec;
//公历日月年周
vu16 w_year;
vu8 w_month;
vu8 w_date;
vu8 week;
}_calendar_obj;
extern _calendar_obj calendar; //日历结构体
extern u8 const mon_table[12]; //月份日期数据表
void Disp_Time(u8 x,u8 y,u8 size);//在制定位置开始显示时间
void Disp_Week(u8 x,u8 y,u8 size,u8 lang);//在指定位置显示星期
u8 RTC_Init(void); //初始化RTC,返回0,失败;1,成功;
u8 Is_Leap_Year(u16 year);//平年,闰年判断
u8 RTC_Alarm_Set(u16 syear,u8 smon,u8 sday,u8 hour,u8 min,u8 sec);
u8 RTC_Get(void); //更新时间
u8 RTC_Get_Week(u16 year,u8 month,u8 day);
u8 RTC_Set(u16 syear,u8 smon,u8 sday,u8 hour,u8 min,u8 sec);//设置时间
#endif
oled 用的7针SPI
#include "oled.h"
#include "stdlib.h"
#include "oledfont.h"
#include "delay.h"
u8 OLED_GRAM[144][8];
//更新显存到LCD
void OLED_Refresh_Gram(void)
{
u8 i,n;
for(i=0;i<8;i++)
{
OLED_WR_Byte (0xb0+i,OLED_CMD); //设置页地址(0~7)
OLED_WR_Byte (0x10,OLED_CMD); //设置显示位置—列低地址
OLED_WR_Byte (0x10,OLED_CMD); //设置显示位置—列高地址
for(n=0;n<128;n++)OLED_WR_Byte(OLED_GRAM[n][i],OLED_DATA);
}
}
#if OLED_MODE==1 //8080并口
//向SSD1306写入一个字节。
//dat:要写入的数据/命令
//cmd:数据/命令标志 0,表示命令;1,表示数据;
void OLED_WR_Byte(u8 dat,u8 cmd)
{
DATAOUT(dat);
OLED_RS=cmd;
OLED_CS=0;
OLED_WR=0;
OLED_WR=1;
OLED_CS=1;
OLED_RS=1;
}
#else
//向SSD1306写入一个字节。
//dat:要写入的数据/命令
//cmd:数据/命令标志 0,表示命令;1,表示数据;
void OLED_WR_Byte(u8 dat,u8 cmd)
{
u8 i;
OLED_RS=cmd; //写命令
OLED_CS=0;
for(i=0;i<8;i++)
{
OLED_SCLK=0;
if(dat&0x80)
OLED_SDIN=1;
else
OLED_SDIN=0;
OLED_SCLK=1;
dat<<=1;
}
OLED_CS=1;
OLED_RS=1;
}
#endif
//开启OLED显示
void OLED_Display_On(void)
{
OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC命令
OLED_WR_Byte(0X14,OLED_CMD); //DCDC ON
OLED_WR_Byte(0XAF,OLED_CMD); //DISPLAY ON
}
//关闭OLED显示
void OLED_Display_Off(void)
{
OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC命令
OLED_WR_Byte(0X10,OLED_CMD); //DCDC OFF
OLED_WR_Byte(0XAE,OLED_CMD); //DISPLAY OFF
}
//更新显存到OLED
void OLED_Refresh(void)
{
u8 i,n;
for(i=0;i<8;i++)
{
OLED_WR_Byte(0xb0+i,OLED_CMD); //设置行起始地址
OLED_WR_Byte(0x00,OLED_CMD); //设置低列起始地址
OLED_WR_Byte(0x10,OLED_CMD); //设置高列起始地址
for(n=0;n<128;n++)
OLED_WR_Byte(OLED_GRAM[n][i],OLED_DATA);
}
}
//清屏函数
void OLED_Clear(void)
{
u8 i,n;
for(i=0;i<8;i++)
{
for(n=0;n<128;n++)
{
OLED_GRAM[n][i]=0;//清除所有数据
}
}
OLED_Refresh();//更新显示
}
//画点
//x:0~127
//y:0~63
void OLED_DrawPoint(u8 x,u8 y)
{
u8 i,m,n;
i=y/8;
m=y%8;
n=1<<m;
OLED_GRAM[x][i]|=n;
}
//清除一个点
//x:0~127
//y:0~63
void OLED_ClearPoint(u8 x,u8 y)
{
u8 i,m,n;
i=y/8;
m=y%8;
n=1<<m;
OLED_GRAM[x][i]=~OLED_GRAM[x][i];
OLED_GRAM[x][i]|=n;
OLED_GRAM[x][i]=~OLED_GRAM[x][i];
}
//画线
//x:0~128
//y:0~64
void OLED_DrawLine(u8 x1,u8 y1,u8 x2,u8 y2)
{
u8 i,k,k1,k2;
if((x1<1)||(x2>128)||(y1<1)||(y2>64)||(x1>x2)||(y1>y2))return;
if(x1==x2) //画竖线
{
for(i=0;i<(y2-y1);i++)
{
OLED_DrawPoint(x1,y1+i);
}
}
else if(y1==y2) //画横线
{
for(i=0;i<(x2-x1);i++)
{
OLED_DrawPoint(x1+i,y1);
}
}
else //画斜线
{
k1=y2-y1;
k2=x2-x1;
k=k1*10/k2;
for(i=0;i<(x2-x1);i++)
{
OLED_DrawPoint(x1+i,y1+i*k/10);
}
}
}
//x,y:圆心坐标
//r:圆的半径
void OLED_DrawCircle(u8 x,u8 y,u8 r)
{
int a, b,num;
a = 0;
b = r;
while(2 * b * b >= r * r)
{
OLED_DrawPoint(x + a, y - b);
OLED_DrawPoint(x - a, y - b);
OLED_DrawPoint(x - a, y + b);
OLED_DrawPoint(x + a, y + b);
OLED_DrawPoint(x + b, y + a);
OLED_DrawPoint(x + b, y - a);
OLED_DrawPoint(x - b, y - a);
OLED_DrawPoint(x - b, y + a);
a++;
num = (a * a + b * b) - r*r;//计算画的点离圆心的距离
if(num > 0)
{
b--;
a--;
}
}
}
//在指定位置显示一个字符,包括部分字符
//x:0~127
//y:0~63
//size:选择字体 12/16/24
void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 size1)
{
u8 i,m,temp,size2,chr1;
u8 y0=y;
size2=(size1/8+((size1%8)?1:0))*(size1/2); //得到字体一个字符对应点阵集所占的字节数
chr1=chr-' '; //计算偏移后的值
for(i=0;i<size2;i++)
{
if(size1==12)
{temp=asc2_1206[chr1][i];} //调用1206字体
else if(size1==16)
{temp=asc2_1608[chr1][i];} //调用1608字体
else if(size1==24)
{temp=asc2_2412[chr1][i];} //调用2412字体
else return;
for(m=0;m<8;m++) //写入数据
{
if(temp&0x80)OLED_DrawPoint(x,y);
else OLED_ClearPoint(x,y);
temp<<=1;
y++;
if((y-y0)==size1)
{
y=y0;
x++;
break;
}
}
}
}
//显示字符串
//x,y:起点坐标
//size1:字体大小
//*chr:字符串起始地址
void OLED_ShowString(u8 x,u8 y,u8 *chr,u8 size1)
{
while((*chr>=' ')&&(*chr<='~'))//判断是不是非法字符!
{
OLED_ShowChar(x,y,*chr,size1);
x+=size1/2;
if(x>128-size1) //换行
{
x=0;
y+=2;
}
chr++;
}
}
//m^n
u32 OLED_Pow(u8 m,u8 n)
{
u32 result=1;
while(n--)
{
result*=m;
}
return result;
}
显示2个数字
x,y :起点坐标
len :数字的位数
size:字体大小
void OLED_ShowNum(u8 x,u8 y,u32 num,u8 len,u8 size1)
{
u8 t,temp;
for(t=0;t<len;t++)
{
temp=(num/OLED_Pow(10,len-t-1))%10;
if(temp==0)
{
OLED_ShowChar(x+(size1/2)*t,y,'0',size1);
}
else
{
OLED_ShowChar(x+(size1/2)*t,y,temp+'0',size1);
}
}
}
//显示汉字
//x,y:起点坐标
//num:汉字对应的序号
//阴码 列行式 逆向
void OLED_ShowChinese(u8 x,u8 y,u8 num,u8 size1)
{
u8 i,m,n=0,temp,chr1;
u8 x0=x,y0=y;
u8 size3=size1/8;
while(size3--)
{
chr1=num*size1/8+n;
n++;
for(i=0;i<size1;i++)
{
if(size1==16)
{temp=Hzk1[chr1][i];}//调用16*16字体
for(m=0;m<8;m++)
{
if(temp&0x01)OLED_DrawPoint(x,y);
else OLED_ClearPoint(x,y);
temp>>=1;
y++;
}
x++;
if((x-x0)==size1)
{x=x0;y0=y0+8;}
y=y0;
}
}
}
//num 显示汉字的个数
//space 每一遍显示的间隔
void OLED_ScrollDisplay(u8 num,u8 space)
{
u8 i,n,t=0,m=0,r;
while(1)
{
if(m==0)
{
OLED_ShowChinese(128,24,t,16); //写入一个汉字保存在OLED_GRAM[][]数组中
t++;
}
if(t==num)
{
for(r=0;r<16*space;r++) //显示间隔
{
for(i=0;i<144;i++)
{
for(n=0;n<8;n++)
{
OLED_GRAM[i-1][n]=OLED_GRAM[i][n];
}
}
OLED_Refresh();
}
t=0;
}
m++;
if(m==16){m=0;}
for(i=0;i<144;i++) //实现左移
{
for(n=0;n<8;n++)
{
OLED_GRAM[i-1][n]=OLED_GRAM[i][n];
}
}
OLED_Refresh();
}
}
//配置写入数据的起始位置
void OLED_WR_BP(u8 x,u8 y)
{
OLED_WR_Byte(0xb0+y,OLED_CMD);//设置行起始地址
OLED_WR_Byte(((x&0xf0)>>4)|0x10,OLED_CMD);
OLED_WR_Byte((x&0x0f)|0x01,OLED_CMD);
}
//x0,y0:起点坐标
//x1,y1:终点坐标
//BMP[]:要写入的图片数组
void OLED_ShowPicture(u8 x0,u8 y0,u8 x1,u8 y1,u8 BMP[])
{
u32 j=0;
u8 x=0,y=0;
if(y%8==0)y=0;
else y+=1;
for(y=y0;y<y1;y++)
{
OLED_WR_BP(x0,y);
for(x=x0;x<x1;x++)
{
OLED_WR_Byte(BMP[j],OLED_DATA);
j++;
}
}
}
//OLED的初始化
void OLED_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB|RCC_APB2Periph_GPIOG, ENABLE); //使能PC,D,G端口时钟
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12|GPIO_Pin_14; //PD3,PD6推挽输出
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //推挽输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;//速度50MHz
GPIO_Init(GPIOB, &GPIO_InitStructure); //初始化GPIOD3,6
GPIO_SetBits(GPIOB,GPIO_Pin_12|GPIO_Pin_14); //PD3,PD6 输出高
#if OLED_MODE==1
GPIO_InitStructure.GPIO_Pin =0xFF; //PC0~7 OUT推挽输出
GPIO_Init(GPIOB, &GPIO_InitStructure);
GPIO_SetBits(GPIOB,0xFF); //PC0~7输出高
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13|GPIO_Pin_14|GPIO_Pin_15; //PG13,14,15 OUT推挽输出
GPIO_Init(GPIOG, &GPIO_InitStructure);
GPIO_SetBits(GPIOG,GPIO_Pin_13|GPIO_Pin_14|GPIO_Pin_15); //PG13,14,15 OUT 输出高
#else
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13|GPIO_Pin_15; //PC0,1 OUT推挽输出
GPIO_Init(GPIOB, &GPIO_InitStructure);
GPIO_SetBits(GPIOB,GPIO_Pin_13|GPIO_Pin_15); //PC0,1 OUT 输出高
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_15; //PG15 OUT推挽输出 RST
GPIO_Init(GPIOG, &GPIO_InitStructure);
GPIO_SetBits(GPIOG,GPIO_Pin_15); //PG15 OUT 输出高
#endif
OLED_CS=1;
OLED_RS=1;
OLED_RST=0;
delay_ms(100);
OLED_RST=1;
OLED_WR_Byte(0xAE,OLED_CMD);//--turn off oled panel
OLED_WR_Byte(0x00,OLED_CMD);//---set low column address
OLED_WR_Byte(0x10,OLED_CMD);//---set high column address
OLED_WR_Byte(0x40,OLED_CMD);//--set start line address Set Mapping RAM Display Start Line (0x00~0x3F)
OLED_WR_Byte(0x81,OLED_CMD);//--set contrast control register
OLED_WR_Byte(0xCF,OLED_CMD);// Set SEG Output Current Brightness
OLED_WR_Byte(0xA1,OLED_CMD);//--Set SEG/Column Mapping 0xa0左右反置 0xa1正常
OLED_WR_Byte(0xC8,OLED_CMD);//Set COM/Row Scan Direction 0xc0上下反置 0xc8正常
OLED_WR_Byte(0xA6,OLED_CMD);//--set normal display
OLED_WR_Byte(0xA8,OLED_CMD);//--set multiplex ratio(1 to 64)
OLED_WR_Byte(0x3f,OLED_CMD);//--1/64 duty
OLED_WR_Byte(0xD3,OLED_CMD);//-set display offset Shift Mapping RAM Counter (0x00~0x3F)
OLED_WR_Byte(0x00,OLED_CMD);//-not offset
OLED_WR_Byte(0xd5,OLED_CMD);//--set display clock divide ratio/oscillator frequency
OLED_WR_Byte(0x80,OLED_CMD);//--set divide ratio, Set Clock as 100 Frames/Sec
OLED_WR_Byte(0xD9,OLED_CMD);//--set pre-charge period
OLED_WR_Byte(0xF1,OLED_CMD);//Set Pre-Charge as 15 Clocks & Discharge as 1 Clock
OLED_WR_Byte(0xDA,OLED_CMD);//--set com pins hardware configuration
OLED_WR_Byte(0x12,OLED_CMD);
OLED_WR_Byte(0xDB,OLED_CMD);//--set vcomh
OLED_WR_Byte(0x40,OLED_CMD);//Set VCOM Deselect Level
OLED_WR_Byte(0x20,OLED_CMD);//-Set Page Addressing Mode (0x00/0x01/0x02)
OLED_WR_Byte(0x02,OLED_CMD);//
OLED_WR_Byte(0x8D,OLED_CMD);//--set Charge Pump enable/disable
OLED_WR_Byte(0x14,OLED_CMD);//--set(0x10) disable
OLED_WR_Byte(0xA4,OLED_CMD);// Disable Entire Display On (0xa4/0xa5)
OLED_WR_Byte(0xA6,OLED_CMD);// Disable Inverse Display On (0xa6/a7)
OLED_WR_Byte(0xAF,OLED_CMD);
OLED_Clear();
}
#ifndef __OLED_H
#define __OLED_H
#include "sys.h"
#include "stdlib.h"
//=========================================电源接线================================================//
// OLED模块 STM32单片机
// VCC 接 DC 5V/3.3V //OLED屏电源正
// GND 接 GND //OLED屏电源地
//=======================================液晶屏数据线接线==========================================//
//本模块默认数据总线类型为4线制SPI
// OLED模块 STM32单片机
// D1 接 PB15 //OLED屏SPI写信号
//=======================================液晶屏控制线接线==========================================//
// OLED模块 STM32单片机
// CS 接 PB11 //OLED屏片选控制信号
// RES 接 PB12 //OLED屏复位控制信号
// DC 接 PB14 //OLED屏数据/命令选择控制信号
// D0 接 PB13 //OLED屏SPI时钟信号
//=========================================触摸屏接线=========================================//
//OLED模式设置
//0: 4线串行模式 (模块的BS1,BS2均接GND)
//1: 并行8080模式 (模块的BS1,BS2均接VCC)
#define OLED_MODE 0
//---------------------------OLED端口定义--------------------------
#define OLED_CS PBout(11)
#define OLED_RST PBout(12) //RES
#define OLED_RS PBout(14)//DC
#define OLED_WR PGout(14)
#define OLED_RD PGout(13)
//PC0~7,作为数据线
#define DATAOUT(x) GPIO_Write(GPIOC,x);//输出
//使用4线串行接口时使用
#define OLED_SCLK PBout(13)//d0
#define OLED_SDIN PBout(15)//d1
#define OLED_CMD 0 //写命令
#define OLED_DATA 1 //写数据
#define u8 unsigned char
#define u32 unsigned int
void OLED_ClearPoint(u8 x,u8 y);
void OLED_ColorTurn(u8 i);
void OLED_DisplayTurn(u8 i);
void I2C_Start(void);
void I2C_Stop(void);
void I2C_WaitAck(void);
void Send_Byte(u8 dat);
void OLED_WR_Byte(u8 dat,u8 mode);
void OLED_DisPlay_On(void);
void OLED_DisPlay_Off(void);
void OLED_Refresh(void);
void OLED_Clear(void);
void OLED_DrawPoint(u8 x,u8 y);
void OLED_DrawLine(u8 x1,u8 y1,u8 x2,u8 y2);
void OLED_DrawCircle(u8 x,u8 y,u8 r);
void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 size1);
void OLED_ShowString(u8 x,u8 y,u8 *chr,u8 size1);
void OLED_ShowNum(u8 x,u8 y,u32 num,u8 len,u8 size1);
void OLED_ShowChinese(u8 x,u8 y,u8 num,u8 size1);
void OLED_ScrollDisplay(u8 num,u8 space);
void OLED_WR_BP(u8 x,u8 y);
void OLED_ShowPicture(u8 x0,u8 y0,u8 x1,u8 y1,u8 BMP[]);
void OLED_Init(void);
void OLED_Refresh(void);
#endif
|