前言
由于芯片外部大坏境,结合自身内部原因,这次开始改用国产32位单片机。近些年来,国产32位单片机确实做的还可以(靠谱的多了起来),且有着如ST这种在MCU32位领域里的行业标杆,上手一个新的单片机也变得容易的多。废话不多说,进入今天的正题。
ADC
ADC,模数转换器,会将模拟信号(连续变化的电压值)转换为数字值,以便在处理和控制系统中使用。特定的外围元器件,可以将温度、湿度、光线亮暗、气压大小等等转化成一个会随之变化的电压信号。再通过它,我们的处理器可以得到一个会随之变化的数值。利用其特性,我们可以间接的得到各种信息并加以处理。ADC的位数是其精度的描述,又或者说是最小分辨率,即数字值变化1对应的模拟信号变化是多大。如一个ADC的位数是12位,参考电压为3.3V,那么其数字值变化1对应的模拟信号电压变化为3.3V/(2^12)≈0.8mV。想要获得更高的精度,可以选择位数跟高的ADC或者降低参考电压。ADC又有许多种类,这里不多做介绍,我们使用的是逐次比较型ADC。
DMA
直接访问存储器,即从一个地方把东西送到另一个地方。这个地方可以是外设,也可以是内存的一个地址。这样在最初配置好后,完全不需要CPU介入,只需要在需要的时候读取对应的内容就行,大大减轻了CPU的负荷。在我看来这是32位单片机真正比8位机强大的最为关键所在。所以在用32位做开发时,我都尽可能的使用DMA去减轻CPU的负荷。
各模块程序编写
罗嗦完使用的外设后,开始进入我们的正题,代码的编写。我用的是GD32F103RCT6(注:请确保自己有一个可以编译的GD32F103工程且里面已经包含了标准库)。
- 做任何事之前,先配置以下我们的时钟。
- 注意手册中提醒的ADC模块的最大时钟频率为14MHz。
void SystemClock_Reconfig(void)
{
rcu_pll_config(RCU_PLLSRC_HXTAL,RCU_PLL_MUL9);
rcu_system_clock_source_config(RCU_CKSYSSRC_PLL);
rcu_adc_clock_config(RCU_CKADC_CKAPB2_DIV6);
rcu_periph_clock_enable(RCU_GPIOA);
rcu_periph_clock_enable(RCU_GPIOB);
rcu_periph_clock_enable(RCU_GPIOC);
rcu_periph_clock_enable(RCU_GPIOD);
rcu_periph_clock_enable(RCU_GPIOE);
rcu_periph_clock_enable(RCU_GPIOF);
rcu_periph_clock_enable(RCU_GPIOG);
rcu_periph_clock_enable(RCU_AF);
rcu_periph_clock_enable(RCU_DMA0);
rcu_periph_clock_enable(RCU_DMA1);
rcu_periph_clock_enable(RCU_I2C1);
rcu_periph_clock_enable(RCU_ADC0);
rcu_periph_clock_enable(RCU_ADC2);
rcu_periph_clock_enable(RCU_TIMER1);
}
- 接着,配置我们的GPIO。
- 把对应的脚配置成模拟输入。
#define ADC0_PORT GPIOA
#define ADC2_PORT GPIOC
#define ADC0_CH4 GPIO_PIN_4
#define ADC0_CH5 GPIO_PIN_5
#define ADC0_CH6 GPIO_PIN_6
#define ADC2_CH12 GPIO_PIN_2
#define ADC2_CH13 GPIO_PIN_3
void GPIO_Init(void)
{
gpio_pin_remap_config(GPIO_SWJ_SWDPENABLE_REMAP, ENABLE);
gpio_init(GPIOB, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, GPIO_PIN_4);
gpio_bit_reset(GPIOB,GPIO_PIN_4);
gpio_init(GPIOB, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, GPIO_PIN_8);
gpio_init(GPIOB, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, GPIO_PIN_9);
gpio_init(GPIOB, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, GPIO_PIN_12);
gpio_init(GPIOB, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, GPIO_PIN_13);
gpio_bit_write(GPIOB, GPIO_PIN_12, 0);
gpio_bit_write(GPIOB, GPIO_PIN_13, 0);
#if USED_IIC_SOFT
gpio_init(IIC_AT24C08_PORT, GPIO_MODE_OUT_OD, GPIO_OSPEED_50MHZ, IIC_AT24C08_SCL);
gpio_init(IIC_AT24C08_PORT, GPIO_MODE_OUT_OD, GPIO_OSPEED_50MHZ, IIC_AT24C08_SDA);
gpio_bit_write(IIC_AT24C08_PORT, IIC_AT24C08_SCL, 1);
gpio_bit_write(IIC_AT24C08_PORT, IIC_AT24C08_SDA, 1);
#else
gpio_init(IIC_AT24C08_PORT,GPIO_MODE_AF_OD,GPIO_OSPEED_50MHZ,IIC_AT24C08_SCL | IIC_AT24C08_SDA);
#endif
gpio_init(ADC0_PORT, GPIO_MODE_AIN, GPIO_OSPEED_50MHZ, ADC0_CH4 | ADC0_CH5 | ADC0_CH6);
gpio_init(ADC2_PORT, GPIO_MODE_AIN, GPIO_OSPEED_50MHZ, ADC2_CH12 | ADC2_CH13);
}
- 接着配置DMA。
- ADC0对应的DMA通道为DMA0_CH0。
- ADC2对应的DMA通道为DMA1_CH4。
- 方向都是从具体外设的数据寄存器到我们自己定义的变量里面。
- 次数=总的通道数x单个通道采集多少次。
- 最后记得打开DMA循环模式。这样在开启转换后,我们ADCn_Buffer[ ][ ]里面的值一直会是最新的。
#define ADC0_CHANNELS 3
#define ADC0_NUMBER 16
#define ADC2_CHANNELS 2
#define ADC2_NUMBER 16
uint32_t ADC0_Buffer[ADC0_CHANNELS][ADC0_NUMBER] = {0};
uint32_t ADC2_Buffer[ADC2_CHANNELS][ADC2_NUMBER] = {0};
void DMA_Init(void)
{
dma_parameter_struct dma_init_ADC0;
dma_parameter_struct dma_init_ADC2;
dma_deinit(DMA0, DMA_CH0);
dma_deinit(DMA1, DMA_CH4);
dma_init_ADC0.direction = DMA_PERIPHERAL_TO_MEMORY;
dma_init_ADC0.memory_addr = (uint32_t)(&ADC0_Buffer);
dma_init_ADC0.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
dma_init_ADC0.memory_width = DMA_MEMORY_WIDTH_32BIT;
dma_init_ADC0.number = (uint32_t)ADC0_CHANNELS*ADC0_NUMBER;
dma_init_ADC0.periph_addr = (uint32_t)(&ADC_RDATA(ADC0));
dma_init_ADC0.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
dma_init_ADC0.periph_width = DMA_PERIPHERAL_WIDTH_32BIT;
dma_init_ADC0.priority = DMA_PRIORITY_MEDIUM;
dma_init(DMA0, DMA_CH0, &dma_init_ADC0);
dma_circulation_enable(DMA0, DMA_CH0);
dma_init_ADC2.direction = DMA_PERIPHERAL_TO_MEMORY;
dma_init_ADC2.memory_addr = (uint32_t)(&ADC2_Buffer);
dma_init_ADC2.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
dma_init_ADC2.memory_width = DMA_MEMORY_WIDTH_32BIT;
dma_init_ADC2.number = (uint32_t)ADC2_CHANNELS*ADC2_NUMBER;
dma_init_ADC2.periph_addr = (uint32_t)(&ADC_RDATA(ADC2));
dma_init_ADC2.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
dma_init_ADC2.periph_width = DMA_PERIPHERAL_WIDTH_32BIT;
dma_init_ADC2.priority = DMA_PRIORITY_LOW;
dma_init(DMA1, DMA_CH4, &dma_init_ADC2);
dma_circulation_enable(DMA1, DMA_CH4);
dma_channel_enable(DMA0,DMA_CH0);
dma_channel_enable(DMA1,DMA_CH4);
}
- 最后配置我们的ADC。
- 这里因为用到了DMA所以得把ADC的转换模式配置在连续扫描模式下。
- 触发源配置成软件触发。
- 同步模式配置成独立模式。(当然也可以设置成规则并行模式)。
- 配置通道长度及规则通道转换顺序。
- 使能ADCn后记得延时一小段时间后再进行自校准。
- 最后记得把DMA功能开启。
void ADCx_Init(void)
{
adc_deinit(ADC0);
adc_deinit(ADC2);
adc_special_function_config(ADC0, ADC_SCAN_MODE, ENABLE);
adc_special_function_config(ADC0, ADC_CONTINUOUS_MODE, ENABLE);
adc_special_function_config(ADC2, ADC_SCAN_MODE, ENABLE);
adc_special_function_config(ADC2, ADC_CONTINUOUS_MODE, ENABLE);
adc_external_trigger_source_config(ADC0, ADC_REGULAR_CHANNEL, ADC0_1_2_EXTTRIG_REGULAR_NONE);
adc_external_trigger_source_config(ADC2, ADC_REGULAR_CHANNEL, ADC0_1_2_EXTTRIG_REGULAR_NONE);
adc_data_alignment_config(ADC0, ADC_DATAALIGN_RIGHT);
adc_data_alignment_config(ADC2, ADC_DATAALIGN_RIGHT);
adc_mode_config(ADC_MODE_FREE);
adc_channel_length_config(ADC0, ADC_REGULAR_CHANNEL, 3);
adc_channel_length_config(ADC2, ADC_REGULAR_CHANNEL, 2);
adc_regular_channel_config(ADC0, 0, ADC_CHANNEL_4, ADC_SAMPLETIME_71POINT5);
adc_regular_channel_config(ADC0, 1, ADC_CHANNEL_5, ADC_SAMPLETIME_71POINT5);
adc_regular_channel_config(ADC0, 2, ADC_CHANNEL_6, ADC_SAMPLETIME_71POINT5);
adc_regular_channel_config(ADC2, 0, ADC_CHANNEL_12, ADC_SAMPLETIME_71POINT5);
adc_regular_channel_config(ADC2, 1, ADC_CHANNEL_13, ADC_SAMPLETIME_71POINT5);
adc_external_trigger_config(ADC0, ADC_REGULAR_CHANNEL, ENABLE);
adc_external_trigger_config(ADC2, ADC_REGULAR_CHANNEL, ENABLE);
adc_enable(ADC0);
delay_ms(10);
adc_calibration_enable(ADC0);
adc_enable(ADC2);
delay_ms(10);
adc_calibration_enable(ADC2);
adc_dma_mode_enable(ADC0);
adc_dma_mode_enable(ADC2);
}
主函数程序
- 在系统时钟配置完后,先配置我们的GPIO和DMA,再配置具体用到DMA的外设,不然有可能有问题(GD32对配置顺序要求比较高)。
- 在进入while(1)循环之前,使用adc_software_trigger_enable();开始触发我们的AD转换。
- 进入while(1)之后,ADC会不停的转换,而DMA也会不停的把ADC转换完成后的数据放到我们指定的变量里。
- 这里我用OLED做的显示,每秒更新下显示的内容。
- 另外说下,由于我是用的网上买的开发板做的测试,配置好的AD口都是浮空的,导致给其中一路(如ADC0_CH3)加电压时,另外两路(ADC0_CH4、CH5)的变量BUFF里也会有差不多的AD值。当给每路施加不同的电压时,读出来的数据就都是对应正确AD值的了。这是由于AD口没有外接实际电路导致的,不必意外。
int main(void)
{
uint8_t memory_s[16]={1,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30};
uint8_t memory_r[16]={0};
SystemTick_Init();
SystemClock_Reconfig();
GPIO_Init();
DMA_Init();
Timer1_Init();
OLED_Init();
ADCx_Init();
#if USED_IIC_SOFT
I2C_ReadPageBytes(SLAVE_ADDRESS0,5,0,memory_r);
#else
I2C1_Init();
delay_ms(10);
I2C_WriteOneByte(SLAVE_ADDRESS0,5,5,138);
#endif
adc_software_trigger_enable(ADC0, ADC_REGULAR_CHANNEL);
adc_software_trigger_enable(ADC2, ADC_REGULAR_CHANNEL);
while(1)
{
if(Module.LED_REFRESH)
{
gpio_bit_set(GPIOB,GPIO_PIN_4);
}
else
{
gpio_bit_reset(GPIOB,GPIO_PIN_4);
}
if(Module.OLED_REFRESH)
{
Module.OLED_REFRESH = 0;
I2C_ReadPageBytes(SLAVE_ADDRESS0,5,0,memory_r);
OLED_ShowNum(24,0,ADC0_Buffer[0][0],5,16);
OLED_ShowNum(24,2,ADC0_Buffer[2][0],5,16);
OLED_ShowNum(24,4,ADC2_Buffer[1][0],5,16);
OLED_ShowNum(24,6,memory_r[3],5,16);
OLED_ShowNum(96,0,ADC0_Buffer[1][0],4,16);
OLED_ShowNum(96,2,ADC2_Buffer[0][0],4,16);
OLED_ShowNum(96,4,memory_r[2],4,16);
OLED_ShowNum(96,6,memory_r[4],4,16);
}
}
return 0;
}
总结
总的来说,毕竟是STM32的孪生兄弟(异父异母?),只要熟悉STM32,再做GD32其实也没多大区别。 最后,今天可是七夕,我居然在码这个文章。兄弟们,看完不给我个赞,对得起我的女朋友吗?
|