IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 嵌入式 -> 基于STM32的温度遥测系统 -> 正文阅读

[嵌入式]基于STM32的温度遥测系统


前言

温度是一个和人们生活环境有着密切关系的物理量,也是一种在生产、科研、生活中需要测量和控制的物理量。温度的变化给我们的生活、生产、工作等带来重大影响,因此对温度的测量至关重要,其测量控制一般使用各式各样的温度传感器。
本文基于STM32F103RCT6设计了一款远程温度监测设备,可实时采集某一点的温度数据,通过NRF24L01进行远距离传输,发送至另一端设备,方便实时读取某一点的温度数据。


一、实际效果图

在这里插入图片描述

二、系统总体结构图

在这里插入图片描述系统设计采用主、从分布式设计,即温度检测点放置独立工作从机,将数据发送至主机。

三、模块使用说明

1、NRF24L01

在这里插入图片描述
在这里插入图片描述

Enhanced ShockBurst?模式下发送数据流程

A. 把地址和要发送的数据按时序送入NRF24L01;
B. 配置CONFIG寄存器,使之进入发送模式;
C. MCU把CE置高(至少10us),激发Enhanced ShockBurst?发射;
D. Enhanced ShockBurst?发射:
a)给射频前端供电;
b)射频数据打包(加字头、CRC校验码);
c)高速发射数据包;
d)发射完成,NRF24L01进入空闲状态

Enhanced ShockBurst?模式下接收数据流程

A. 配置接收地址和要接收的数据包大小;
B. 配置CONFIG寄存器,使之进入接收模式,把CE置高;
C. 130us后,NRF24L01进入监视状态,等待数据包的到来;
D. 当接收到正确的数据包(正确的地址和CRC校验码),NRF24L01自动移去字头、地址和CRC校验位
E. NRF24L01通过把STATUS寄存器的RX_DR置位(STATUS一般引起MCU中断)通知MCU;
F. MCU把数据从FIFO读出(0x61指令);
G. 所有数据读取完毕后,可清除STATUS寄存器;NRF24L01可以进入四中主要的模式之一。

2、DS18B20

在这里插入图片描述
在这里插入图片描述DS18B20内部主要包括,64位ROM、2字节温度输出寄存器、1字节上下警报寄存器(TH和TL)和1字节配置寄存器。ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码,每个DS18B20的64位序列号均不相同,这样就可以实现一根总线挂接多个DS18B20的目的。

操作方式

a 通过模块配置信号DQ写入(CCH)命令,跳过DS18B20的ROM匹配。因为此单片机上仅挂载了一个DS18B20,不需要进行读取ROM编码以及匹配ROM编码。
b 通过模块配置信号DQ写入(44H)命令,启动温度转换。系统采用DS18B20默认的12位精度,温度转换所需时间最大750ms,因此需等待750ms。
c 通过模块配置信号DQ写入(BEH)命令,读取DS18B20中暂存寄存器内的温度数据。
d 暂存寄存器值送入CRC校验模块,检测CRC校验模块反馈标志,若CRC校验正确,则更新温度数据,否则,不更新温度数据。

四、模块程序

1、NRF24L01程序

nrf24l01.c

#include "24l01.h"
#include "delay.h"
//	 									  
//
    
const u8 TX_ADDRESS[TX_ADR_WIDTH]={0x34,0x43,0x10,0x10,0x01}; //发送地址
const u8 RX_ADDRESS[RX_ADR_WIDTH]={0x34,0x43,0x10,0x10,0x01};

//初始化24L01的IO口
void NRF24L01_Init(void)
{ 	
	GPIO_InitTypeDef GPIO_InitStructure;
    SPI_InitTypeDef  SPI_InitStructure;

	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOC, ENABLE);	 //使能PA,C端口时钟
    	
	
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;  //PA4上拉 防止W25X的干扰
 	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;  //推挽输出
 	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
 	GPIO_Init(GPIOB, &GPIO_InitStructure);	//初始化指定IO
 	GPIO_SetBits(GPIOA,GPIO_Pin_4);  //上拉				
 	

	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2|GPIO_Pin_3;  //PC2 3 推挽 	  
 	GPIO_Init(GPIOC, &GPIO_InitStructure);  //初始化指定IO
  
	GPIO_InitStructure.GPIO_Pin  = GPIO_Pin_1;   
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD;  //PC1 输入  
	GPIO_Init(GPIOC, &GPIO_InitStructure);

	GPIO_ResetBits(GPIOC,GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_3);  //PC1,2,3上拉
		 
    SPI1_Init();  //初始化SPI	 
 
	SPI_Cmd(SPI1, DISABLE);  // SPI外设不使能

	SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;  //SPI设置为双线双向全双工
	SPI_InitStructure.SPI_Mode = SPI_Mode_Master;  //SPI主机
    SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;  //发送接收8位帧结构
	SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;  //时钟悬空低
	SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge;  //数据捕获于第1个时钟沿
	SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;  //NSS信号由软件控制
	SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_256;  //定义波特率预分频的值:波特率预分频值为256
	SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;	//数据传输从MSB位开始
	SPI_InitStructure.SPI_CRCPolynomial = 7;  //CRC值计算的多项式
	SPI_Init(SPI1, &SPI_InitStructure);  //根据SPI_InitStruct中指定的参数初始化外设SPIx寄存器
 
	SPI_Cmd(SPI1, ENABLE); //使能SPI外设
			 
	NRF24L01_CE=0; 			//使能24L01
	NRF24L01_CSN=1;			//SPI片选取消  
	 		 	 
}
//检测24L01是否存在
//返回值:0,成功;1,失败	
u8 NRF24L01_Check(void)
{
	u8 buf[5]={0XA5,0XA5,0XA5,0XA5,0XA5};
	u8 i;
	SPI1_SetSpeed(SPI_BaudRatePrescaler_4); //spi速度为9Mhz(24L01的最大SPI时钟为10Mhz)   	 
	NRF24L01_Write_Buf(NRF_WRITE_REG+TX_ADDR,buf,5);//写入5个字节的地址.	
	NRF24L01_Read_Buf(TX_ADDR,buf,5); //读出写入的地址  
	for(i=0;i<5;i++)if(buf[i]!=0XA5)break;	 							   
	if(i!=5)return 1;//检测24L01错误	
	return 0;		 //检测到24L01
}	 	 
//SPI写寄存器
//reg:指定寄存器地址
//value:写入的值
u8 NRF24L01_Write_Reg(u8 reg,u8 value)
{
	u8 status;	
   	NRF24L01_CSN=0;                 //使能SPI传输
  	status =SPI1_ReadWriteByte(reg);//发送寄存器号 
  	SPI1_ReadWriteByte(value);      //写入寄存器的值
  	NRF24L01_CSN=1;                 //禁止SPI传输	   
  	return(status);       			//返回状态值
}
//读取SPI寄存器值
//reg:要读的寄存器
u8 NRF24L01_Read_Reg(u8 reg)
{
	u8 reg_val;	    
 	NRF24L01_CSN = 0;          //使能SPI传输		
  	SPI1_ReadWriteByte(reg);   //发送寄存器号
  	reg_val=SPI1_ReadWriteByte(0XFF);//读取寄存器内容
  	NRF24L01_CSN = 1;          //禁止SPI传输		    
  	return(reg_val);           //返回状态值
}	
//在指定位置读出指定长度的数据
//reg:寄存器(位置)
//*pBuf:数据指针
//len:数据长度
//返回值,此次读到的状态寄存器值 
u8 NRF24L01_Read_Buf(u8 reg,u8 *pBuf,u8 len)
{
	u8 status,u8_ctr;	       
  	NRF24L01_CSN = 0;           //使能SPI传输
  	status=SPI1_ReadWriteByte(reg);//发送寄存器值(位置),并读取状态值   	   
 	for(u8_ctr=0;u8_ctr<len;u8_ctr++)pBuf[u8_ctr]=SPI1_ReadWriteByte(0XFF);//读出数据
  	NRF24L01_CSN=1;       //关闭SPI传输
  	return status;        //返回读到的状态值
}
//在指定位置写指定长度的数据
//reg:寄存器(位置)
//*pBuf:数据指针
//len:数据长度
//返回值,此次读到的状态寄存器值
u8 NRF24L01_Write_Buf(u8 reg, u8 *pBuf, u8 len)
{
	u8 status,u8_ctr;	    
 	NRF24L01_CSN = 0;          //使能SPI传输
  	status = SPI1_ReadWriteByte(reg);//发送寄存器值(位置),并读取状态值
  	for(u8_ctr=0; u8_ctr<len; u8_ctr++)SPI1_ReadWriteByte(*pBuf++); //写入数据	 
  	NRF24L01_CSN = 1;       //关闭SPI传输
  	return status;          //返回读到的状态值
}				   
//启动NRF24L01发送一次数据
//txbuf:待发送数据首地址
//返回值:发送完成状况
u8 NRF24L01_TxPacket(u8 *txbuf)
{
	u8 sta;
 	SPI1_SetSpeed(SPI_BaudRatePrescaler_8);//spi速度为9Mhz(24L01的最大SPI时钟为10Mhz)   
	NRF24L01_CE=0;
  	NRF24L01_Write_Buf(WR_TX_PLOAD,txbuf,TX_PLOAD_WIDTH);//写数据到TX BUF  32个字节
 	NRF24L01_CE=1;//启动发送	   
	while(NRF24L01_IRQ!=0);//等待发送完成
	sta=NRF24L01_Read_Reg(STATUS);  //读取状态寄存器的值	   
	NRF24L01_Write_Reg(NRF_WRITE_REG+STATUS,sta); //清除TX_DS或MAX_RT中断标志
	if(sta&MAX_TX)//达到最大重发次数
	{
		NRF24L01_Write_Reg(FLUSH_TX,0xff);//清除TX FIFO寄存器 
		return MAX_TX; 
	}
	if(sta&TX_OK)//发送完成
	{
		return TX_OK;
	}
	return 0xff;//其他原因发送失败
}
//启动NRF24L01发送一次数据
//txbuf:待发送数据首地址
//返回值:0,接收完成;其他,错误代码
u8 NRF24L01_RxPacket(u8 *rxbuf)
{
	u8 sta;		    							   
	SPI1_SetSpeed(SPI_BaudRatePrescaler_8); //spi速度为9Mhz(24L01的最大SPI时钟为10Mhz)   
	sta=NRF24L01_Read_Reg(STATUS);  //读取状态寄存器的值    	 
	NRF24L01_Write_Reg(NRF_WRITE_REG+STATUS,sta); //清除TX_DS或MAX_RT中断标志
	if(sta&RX_OK)//接收到数据
	{
		NRF24L01_Read_Buf(RD_RX_PLOAD,rxbuf,RX_PLOAD_WIDTH);//读取数据
		NRF24L01_Write_Reg(FLUSH_RX,0xff);//清除RX FIFO寄存器 
		return 0; 
	}	   
	return 1;//没收到任何数据
}					    
//该函数初始化NRF24L01到RX模式
//设置RX地址,写RX数据宽度,选择RF频道,波特率和LNA HCURR
//当CE变高后,即进入RX模式,并可以接收数据了		   
void NRF24L01_RX_Mode(void)
{
	NRF24L01_CE=0;	  
  	NRF24L01_Write_Buf(NRF_WRITE_REG+RX_ADDR_P0,(u8*)RX_ADDRESS,RX_ADR_WIDTH);//写RX节点地址
	  
  	NRF24L01_Write_Reg(NRF_WRITE_REG+EN_AA,0x01);    //使能通道0的自动应答    
  	NRF24L01_Write_Reg(NRF_WRITE_REG+EN_RXADDR,0x01);//使能通道0的接收地址  	 
  	NRF24L01_Write_Reg(NRF_WRITE_REG+RF_CH,40);	     //设置RF通信频率		  
  	NRF24L01_Write_Reg(NRF_WRITE_REG+RX_PW_P0,RX_PLOAD_WIDTH);//选择通道0的有效数据宽度 	    
  	NRF24L01_Write_Reg(NRF_WRITE_REG+RF_SETUP,0x0f);//设置TX发射参数,0db增益,2Mbps,低噪声增益开启   
  	NRF24L01_Write_Reg(NRF_WRITE_REG+CONFIG, 0x0f);//配置基本工作模式的参数;PWR_UP,EN_CRC,16BIT_CRC,接收模式 
  	NRF24L01_CE = 1; //CE为高,进入接收模式 
}						 
//该函数初始化NRF24L01到TX模式
//设置TX地址,写TX数据宽度,设置RX自动应答的地址,填充TX发送数据,选择RF频道,波特率和LNA HCURR
//PWR_UP,CRC使能
//当CE变高后,即进入RX模式,并可以接收数据了		   
//CE为高大于10us,则启动发送.	 
void NRF24L01_TX_Mode(void)
{														 
	NRF24L01_CE=0;	    
  	NRF24L01_Write_Buf(NRF_WRITE_REG+TX_ADDR,(u8*)TX_ADDRESS,TX_ADR_WIDTH);//写TX节点地址 
  	NRF24L01_Write_Buf(NRF_WRITE_REG+RX_ADDR_P0,(u8*)RX_ADDRESS,RX_ADR_WIDTH); //设置TX节点地址,主要为了使能ACK	  

  	NRF24L01_Write_Reg(NRF_WRITE_REG+EN_AA,0x01);     //使能通道0的自动应答    
  	NRF24L01_Write_Reg(NRF_WRITE_REG+EN_RXADDR,0x01); //使能通道0的接收地址  
  	NRF24L01_Write_Reg(NRF_WRITE_REG+SETUP_RETR,0x1a);//设置自动重发间隔时间:500us + 86us;最大自动重发次数:10次
  	NRF24L01_Write_Reg(NRF_WRITE_REG+RF_CH,40);       //设置RF通道为40
  	NRF24L01_Write_Reg(NRF_WRITE_REG+RF_SETUP,0x0f);  //设置TX发射参数,0db增益,2Mbps,低噪声增益开启   
  	NRF24L01_Write_Reg(NRF_WRITE_REG+CONFIG,0x0e);    //配置基本工作模式的参数;PWR_UP,EN_CRC,16BIT_CRC,接收模式,开启所有中断
	NRF24L01_CE=1;//CE为高,10us后启动发送
}

nrf24l01.h

#ifndef __24L01_H
#define __24L01_H	 		  
#include "sys.h"   
//	 									  
//
    
//
//NRF24L01寄存器操作命令
#define NRF_READ_REG    0x00  //读配置寄存器,低5位为寄存器地址
#define NRF_WRITE_REG   0x20  //写配置寄存器,低5位为寄存器地址
#define RD_RX_PLOAD     0x61  //读RX有效数据,1~32字节
#define WR_TX_PLOAD     0xA0  //写TX有效数据,1~32字节
#define FLUSH_TX        0xE1  //清除TX FIFO寄存器.发射模式下用
#define FLUSH_RX        0xE2  //清除RX FIFO寄存器.接收模式下用
#define REUSE_TX_PL     0xE3  //重新使用上一包数据,CE为高,数据包被不断发送.
#define NOP             0xFF  //空操作,可以用来读状态寄存器	 
//SPI(NRF24L01)寄存器地址
#define CONFIG          0x00  //配置寄存器地址;bit0:1接收模式,0发射模式;bit1:电选择;bit2:CRC模式;bit3:CRC使能;
                              //bit4:中断MAX_RT(达到最大重发次数中断)使能;bit5:中断TX_DS使能;bit6:中断RX_DR使能
#define EN_AA           0x01  //使能自动应答功能  bit0~5,对应通道0~5
#define EN_RXADDR       0x02  //接收地址允许,bit0~5,对应通道0~5
#define SETUP_AW        0x03  //设置地址宽度(所有数据通道):bit1,0:00,3字节;01,4字节;02,5字节;
#define SETUP_RETR      0x04  //建立自动重发;bit3:0,自动重发计数器;bit7:4,自动重发延时 250*x+86us
#define RF_CH           0x05  //RF通道,bit6:0,工作通道频率;
#define RF_SETUP        0x06  //RF寄存器;bit3:传输速率(0:1Mbps,1:2Mbps);bit2:1,发射功率;bit0:低噪声放大器增益
#define STATUS          0x07  //状态寄存器;bit0:TX FIFO满标志;bit3:1,接收数据通道号(最大:6);bit4,达到最多次重发
                              //bit5:数据发送完成中断;bit6:接收数据中断;
#define MAX_TX  		0x10  //达到最大发送次数中断
#define TX_OK   		0x20  //TX发送完成中断
#define RX_OK   		0x40  //接收到数据中断

#define OBSERVE_TX      0x08  //发送检测寄存器,bit7:4,数据包丢失计数器;bit3:0,重发计数器
#define CD              0x09  //载波检测寄存器,bit0,载波检测;
#define RX_ADDR_P0      0x0A  //数据通道0接收地址,最大长度5个字节,低字节在前
#define RX_ADDR_P1      0x0B  //数据通道1接收地址,最大长度5个字节,低字节在前
#define RX_ADDR_P2      0x0C  //数据通道2接收地址,最低字节可设置,高字节,必须同RX_ADDR_P1[39:8]相等;
#define RX_ADDR_P3      0x0D  //数据通道3接收地址,最低字节可设置,高字节,必须同RX_ADDR_P1[39:8]相等;
#define RX_ADDR_P4      0x0E  //数据通道4接收地址,最低字节可设置,高字节,必须同RX_ADDR_P1[39:8]相等;
#define RX_ADDR_P5      0x0F  //数据通道5接收地址,最低字节可设置,高字节,必须同RX_ADDR_P1[39:8]相等;
#define TX_ADDR         0x10  //发送地址(低字节在前),ShockBurstTM模式下,RX_ADDR_P0与此地址相等
#define RX_PW_P0        0x11  //接收数据通道0有效数据宽度(1~32字节),设置为0则非法
#define RX_PW_P1        0x12  //接收数据通道1有效数据宽度(1~32字节),设置为0则非法
#define RX_PW_P2        0x13  //接收数据通道2有效数据宽度(1~32字节),设置为0则非法
#define RX_PW_P3        0x14  //接收数据通道3有效数据宽度(1~32字节),设置为0则非法
#define RX_PW_P4        0x15  //接收数据通道4有效数据宽度(1~32字节),设置为0则非法
#define RX_PW_P5        0x16  //接收数据通道5有效数据宽度(1~32字节),设置为0则非法
#define NRF_FIFO_STATUS 0x17  //FIFO状态寄存器;bit0,RX FIFO寄存器空标志;bit1,RX FIFO满标志;bit2,3,保留
                              //bit4,TX FIFO空标志;bit5,TX FIFO满标志;bit6,1,循环发送上一数据包.0,不循环;
//
//24L01操作线
#define NRF24L01_CE   PCout(3) //24L01片选信号
#define NRF24L01_CSN  PCout(2) //SPI片选信号	   
#define NRF24L01_IRQ  PCin(1)  //IRQ主机数据输入
//24L01发送接收数据宽度定义
#define TX_ADR_WIDTH    5   	//5字节的地址宽度
#define RX_ADR_WIDTH    5   	//5字节的地址宽度
#define TX_PLOAD_WIDTH  32  	//32字节的用户数据宽度
#define RX_PLOAD_WIDTH  32  	//32字节的用户数据宽度
									   	   

void NRF24L01_Init(void);						//初始化
void NRF24L01_RX_Mode(void);					//配置为接收模式
void NRF24L01_TX_Mode(void);					//配置为发送模式
u8 NRF24L01_Write_Buf(u8 reg, u8 *pBuf, u8 u8s);//写数据区
u8 NRF24L01_Read_Buf(u8 reg, u8 *pBuf, u8 u8s);	//读数据区		  
u8 NRF24L01_Read_Reg(u8 reg);					//读寄存器
u8 NRF24L01_Write_Reg(u8 reg, u8 value);		//写寄存器
u8 NRF24L01_Check(void);						//检查24L01是否存在
u8 NRF24L01_TxPacket(u8 *txbuf);				//发送一个包的数据
u8 NRF24L01_RxPacket(u8 *rxbuf);				//接收一个包的数据
#endif

2、DS18B20程序

bs18b20.c

#include "ds18b20.h"
#include "delay.h"	
//	 								  
//
  
//复位DS18B20
void DS18B20_Rst(void)	   
{                 
	DS18B20_IO_OUT(); 	//SET PG11 OUTPUT
    DS18B20_DQ_OUT=0; 	//拉低DQ
    delay_us(750);    	//拉低750us
    DS18B20_DQ_OUT=1; 	//DQ=1 
	delay_us(15);     	//15US
}
//等待DS18B20的回应
//返回1:未检测到DS18B20的存在
//返回0:存在
u8 DS18B20_Check(void) 	   
{   
	u8 retry=0;
	DS18B20_IO_IN();	//SET PG11 INPUT	 
    while (DS18B20_DQ_IN&&retry<200)
	{
		retry++;
		delay_us(1);
	};	 
	if(retry>=200)return 1;
	else retry=0;
    while (!DS18B20_DQ_IN&&retry<240)
	{
		retry++;
		delay_us(1);
	};
	if(retry>=240)return 1;	    
	return 0;
}
//从DS18B20读取一个位
//返回值:1/0
u8 DS18B20_Read_Bit(void) 	 
{
    u8 data;
	DS18B20_IO_OUT();	//SET PG11 OUTPUT
    DS18B20_DQ_OUT=0; 
	delay_us(2);
    DS18B20_DQ_OUT=1; 
	DS18B20_IO_IN();	//SET PG11 INPUT
	delay_us(12);
	if(DS18B20_DQ_IN)data=1;
    else data=0;	 
    delay_us(50);           
    return data;
}
//从DS18B20读取一个字节
//返回值:读到的数据
u8 DS18B20_Read_Byte(void)     
{        
    u8 i,j,dat;
    dat=0;
	for (i=1;i<=8;i++) 
	{
        j=DS18B20_Read_Bit();
        dat=(j<<7)|(dat>>1);
    }						    
    return dat;
}
//写一个字节到DS18B20
//dat:要写入的字节
void DS18B20_Write_Byte(u8 dat)     
 {             
    u8 j;
    u8 testb;
	DS18B20_IO_OUT();	//SET PG11 OUTPUT;
    for (j=1;j<=8;j++) 
	{
        testb=dat&0x01;
        dat=dat>>1;
        if (testb) 
        {
            DS18B20_DQ_OUT=0;	// Write 1
            delay_us(2);                            
            DS18B20_DQ_OUT=1;
            delay_us(60);             
        }
        else 
        {
            DS18B20_DQ_OUT=0;	// Write 0
            delay_us(60);             
            DS18B20_DQ_OUT=1;
            delay_us(2);                          
        }
    }
}
//开始温度转换
void DS18B20_Start(void) 
{   						               
    DS18B20_Rst();	   
	DS18B20_Check();	 
    DS18B20_Write_Byte(0xcc);	// skip rom
    DS18B20_Write_Byte(0x44);	// convert
} 

//初始化DS18B20的IO口 DQ 同时检测DS的存在
//返回1:不存在
//返回0:存在    	 
u8 DS18B20_Init(void)
{
 	GPIO_InitTypeDef  GPIO_InitStructure;
 	
 	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);	 //使能PORTG口时钟 
	
 	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_15;				//PORTG.11 推挽输出
 	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 		  
 	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
 	GPIO_Init(GPIOA, &GPIO_InitStructure);

 	GPIO_SetBits(GPIOA,GPIO_Pin_15);    //输出1

	DS18B20_Rst();

	return DS18B20_Check();
}  
//从ds18b20得到温度值
//精度:0.1C
//返回值:温度值 (-550~1250) 
short DS18B20_Get_Temp(void)
{
    u8 temp;
    u8 TL,TH;
	short tem;
    DS18B20_Start ();  			// ds1820 start convert
    DS18B20_Rst();
    DS18B20_Check();	 
    DS18B20_Write_Byte(0xcc);	// skip rom
    DS18B20_Write_Byte(0xbe);	// convert	    
    TL=DS18B20_Read_Byte(); 	// LSB   
    TH=DS18B20_Read_Byte(); 	// MSB  
	    	  
    if(TH>7)
    {
        TH=~TH;
        TL=~TL; 
        temp=0;					//温度为负  
    }else temp=1;				//温度为正	  	  
    tem=TH; 					//获得高八位
    tem<<=8;    
    tem+=TL;					//获得底八位
    tem=(float)tem*0.625;		//转换     
	if(temp)return tem; 		//返回温度值
	else return -tem;    
}

bs18b20.h

#ifndef __DS18B20_H
#define __DS18B20_H 
#include "sys.h"   
//	 								  
//

//IO方向设置
#define DS18B20_IO_IN()  {GPIOA->CRH&=0XFFFF0FFF;GPIOA->CRH|=8<<12;}
#define DS18B20_IO_OUT() {GPIOA->CRH&=0XFFFF0FFF;GPIOA->CRH|=3<<12;}
IO操作函数											   
#define	DS18B20_DQ_OUT PAout(15) //数据端口	PA15 
#define	DS18B20_DQ_IN  PAin(15)  //数据端口	PA15 
   	
u8 DS18B20_Init(void);//初始化DS18B20
short DS18B20_Get_Temp(void);//获取温度
void DS18B20_Start(void);//开始温度转换
void DS18B20_Write_Byte(u8 dat);//写入一个字节
u8 DS18B20_Read_Byte(void);//读出一个字节
u8 DS18B20_Read_Bit(void);//读出一个位
u8 DS18B20_Check(void);//检测是否存在DS18B20
void DS18B20_Rst(void);//复位DS18B20    
#endif

五、总结

系统利用DS18B20完成温度采集,将单片机与NRF24L01模块结合,克服了传统近距离监测系统中的局限,给出了一种远距离多点温度遥测采集系统的实现方法。该系统结构简单、便于维护、性价比高,在原设计思路基础上,稍加修改,就可应用食品加工、工业检测等领域。

六、详细代码

基于STM32远距离温度监测系统程序

  嵌入式 最新文章
基于高精度单片机开发红外测温仪方案
89C51单片机与DAC0832
基于51单片机宠物自动投料喂食器控制系统仿
《痞子衡嵌入式半月刊》 第 68 期
多思计组实验实验七 简单模型机实验
CSC7720
启明智显分享| ESP32学习笔记参考--PWM(脉冲
STM32初探
STM32 总结
【STM32】CubeMX例程四---定时器中断(附工
上一篇文章      下一篇文章      查看所有文章
加:2021-08-24 15:43:22  更:2021-08-24 15:44:12 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年5日历 -2024/5/21 0:37:02-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码