IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 嵌入式 -> 嵌入式Linux开发25——Linux 内核定时器实验 -> 正文阅读

[嵌入式]嵌入式Linux开发25——Linux 内核定时器实验


??定时器是我们最常用到的功能,一般用来完成定时功能,本章我们就来学习一下 Linux 内核提供的定时器 API 函数,通过这些定时器 API 函数我们可以完成很多要求定时的应用。 Linux内核也提供了短延时函数,比如微秒、纳秒、毫秒延时函数,接下来我们就学习一下这些和时间有关的功能。

Linux 时间管理和内核定时器简介

1.内核时间管理简介

??Linux 内核中有大量的函数需要时间管理,比如周期性的调度程序、延时程序、对于我们驱动编写者来说最常用的定时器。硬件定时器提供时钟源,时钟源的频率可以设置, 设置好以后就周期性的产生定时中断,系统使用定时中断来计时。中断周期性产生的频率就是系统频率,也叫做节拍率(tick rate)(有的资料也叫系统频率),比如 1000Hz, 100Hz 等等说的就是系统节拍率。系统节拍率是可以设置的,单位是 Hz,我们在编译 Linux 内核的时候可以通过图形化界面设置系统节拍率,按照如下路径打开配置界面:
在这里插入图片描述
??从图中可以看出,可选的系统节拍率为 100Hz、 200Hz、 250Hz、 300Hz、 500Hz 和1000Hz,默认情况下选择 100Hz。设置好以后打开 Linux 内核源码根目录下的.config 文件,在此文件中有如图所示定义:
在这里插入图片描述
??上图中的 CONFIG_HZ 为 100, Linux 内核会使用 CONFIG_HZ 来设置自己的系统时钟。打开文件 include/asm-generic/param.h,有如下内容:

# undef HZ
# define HZ CONFIG_HZ
# define USER_HZ 100
# define CLOCKS_PER_SEC (USER_HZ)

??定义了一个宏 HZ,宏 HZ 就是 CONFIG_HZ,因此 HZ=100,我们后面编写 Linux驱动的时候会常常用到 HZ,因为 HZ 表示一秒的节拍数,也就是频率。
??大多数初学者看到系统节拍率默认为 100Hz 的时候都会有疑问,怎么这么小? 100Hz 是可选的节拍率里面最小的。为什么不选择大一点的呢?这里就引出了一个问题:高节拍率和低节拍率的优缺点:
??①、高节拍率会提高系统时间精度,如果采用 100Hz 的节拍率,时间精度就是 10ms,采用1000Hz 的话时间精度就是 1ms,精度提高了 10 倍。高精度时钟的好处有很多,对于那些对时间要求严格的函数来说,能够以更高的精度运行,时间测量也更加准确。
??②、高节拍率会导致中断的产生更加频繁,频繁的中断会加剧系统的负担, 1000Hz 和 100Hz的系统节拍率相比,系统要花费 10 倍的“精力”去处理中断。中断服务函数占用处理器的时间增加,但是现在的处理器性能都很强大,所以采用 1000Hz 的系统节拍率并不会增加太大的负载压力。根据自己的实际情况,选择合适的系统节拍率,本文我们全部采用默认的 100Hz 系统节拍率。
??Linux 内核使用全局变量 jiffies 来记录系统从启动以来的系统节拍数,系统启动的时候会将 jiffies 初始化为 0, jiffies 定义在文件 include/linux/jiffies.h 中,定义如下:

extern u64 __jiffy_data jiffies_64;
extern unsigned long volatile __jiffy_data jiffies;

??jiffies_64 和 jiffies 其实是同一个东西, jiffies_64 用于 64 位系统,而 jiffies 用于 32 位系统。为了兼容不同的硬件, jiffies 其实就是 jiffies_64 的低 32 位,当我们访问 jiffies 的时候其实访问的是 jiffies_64 的低 32 位,使用 get_jiffies_64 这个函数可以获取 jiffies_64 的值。在 32 位的系统上读取 jiffies 的值,在 64 位的系统上 jiffes 和 jiffies_64表示同一个变量,因此也可以直接读取 jiffies 的值。所以不管是 32 位的系统还是 64 位系统,都可以使用 jiffies。
??前面说了 HZ 表示每秒的节拍数, jiffies 表示系统运行的 jiffies 节拍数,所以 jiffies/HZ 就是系统运行时间,单位为秒。不管是 32 位还是 64 位的 jiffies,都有溢出的风险,溢出以后会重新从 0 开始计数,相当于绕回来了,因此有些资料也将这个现象也叫做绕回。假如 HZ 为最大值 1000 的时候, 32 位的 jiffies 只需要 49.7 天就发生了绕回,对于 64 位的 jiffies 来说大概需要5.8 亿年才能绕回,因此 jiffies_64 的绕回忽略不计。处理 32 位 jiffies 的绕回显得尤为重要,Linux 内核提供了如表所示的几个 API 函数来处理绕回。
在这里插入图片描述
??如果 unkown 超过 known 的话, time_after 函数返回真,否则返回假。如果 unkown 没有超过 known 的话 time_before 函数返回真,否则返回假。 time_after_eq 函数和 time_after 函数类似,只是多了判断等于这个条件。同理, time_before_eq 函数和 time_before 函数也类似。比如我们要判断某段代码执行时间有没有超时,此时就可以使用如下所示代码:

unsigned long timeout;
timeout = jiffies + (2 * HZ); /* 超时的时间点 */
/*************************************
具体的代码
************************************/

/* 判断有没有超时 */
if(time_before(jiffies, timeout)) {
/* 超时未发生 */
} else {
/* 超时发生 */
}

??timeout 就是超时时间点,比如我们要判断代码执行时间是不是超过了 2 秒,那么超时时间点就是 jiffies+(2*HZ),如果 jiffies 大于 timeout 那就表示超时了,否则就是没有超时。
??为了方便开发, Linux 内核提供了几个 jiffies 和 ms、 us、 ns 之间的转换函数,如表所示:
在这里插入图片描述

2.内核定时器简介

??定时器是一个很常用的功能,需要周期性处理的工作都要用到定时器。 Linux 内核定时器采用系统时钟来实现,并不是PIT等硬件定时器。 Linux 内核定时器使用很简单,只需要提供超时时间(相当于定时值)和定时处理函数即可,当超时时间到了以后设置的定时处理函数就会执行,和我们使用硬件定时器的套路一样,只是使用内核定时器不需要做一大堆的寄存器初始化工作。在使用内核定时器的时候要注意一点,内核定时器并不是周期性运行的,超时以后就会自动关闭,因此如果想要实现周期性定时,那么就需要在定时处理函数中重新开启定时器。 Linux 内核使用 timer_list 结构体表示内核定时器, timer_list 定义在文件include/linux/timer.h 中,定义如下(省略条件编译):

struct timer_list {
struct list_head entry;
unsigned long expires; /* 定时器超时时间,单位是节拍数 */
struct tvec_base *base;
void (*function)(unsigned long); /* 定时处理函数 */
unsigned long data; /* 要传递给 function 函数的参数 */
int slack;
};

??要使用内核定时器首先要先定义一个 timer_list 变量,表示定时器, tiemr_list 结构体的expires 成员变量表示超时时间,单位为节拍数。比如我们现在需要定义一个周期为 2 秒的定时器,那么这个定时器的超时时间就是 jiffies+(2HZ),因此 expires=jiffies+(2HZ)。 function 就是定时器超时以后的定时处理函数,我们要做的工作就放到这个函数里面,需要我们编写这个定时处理函数。
??定义好定时器以后还需要通过一系列的 API 函数来初始化此定时器,这些函数如下:

2.1 init_timer 函数

??init_timer 函数负责初始化 timer_list 类型变量,当我们定义了一个 timer_list 变量以后一定要先用 init_timer 初始化一下。 init_timer 函数原型如下:

void init_timer(struct timer_list *timer)

??函数参数和返回值含义如下:
??timer:要初始化定时器。
??返回值: 没有返回值。

2.2 add_timer 函数

??add_timer 函数用于向 Linux 内核注册定时器,使用 add_timer 函数向内核注册定时器以后,定时器就会开始运行,函数原型如下:

void add_timer(struct timer_list *timer)

??函数参数和返回值含义如下:
??timer:要注册的定时器。
??返回值: 没有返回值。

2.3 del_timer 函数

??del_timer 函数用于删除一个定时器,不管定时器有没有被激活,都可以使用此函数删除。在多处理器系统上,定时器可能会在其他的处理器上运行,因此在调用 del_timer 函数删除定时器之前要先等待其他处理器的定时处理器函数退出。 del_timer 函数原型如下:

int del_timer(struct timer_list * timer)

??函数参数和返回值含义如下:
??timer:要删除的定时器。
??返回值: 0,定时器还没被激活; 1,定时器已经激活。

2.4 del_timer_sync 函数

??del_timer_sync 函数是 del_timer 函数的同步版,会等待其他处理器使用完定时器再删除,del_timer_sync 不能使用在中断上下文中。 del_timer_sync 函数原型如下所示:

int del_timer_sync(struct timer_list *timer)

??函数参数和返回值含义如下:
??timer:要删除的定时器。
??返回值: 0,定时器还没被激活; 1,定时器已经激活。

2.5 mod_timer 函数

??mod_timer 函数用于修改定时值,如果定时器还没有激活的话, mod_timer 函数会激活定时器!函数原型如下:

int mod_timer(struct timer_list *timer, unsigned long expires)

??函数参数和返回值含义如下:
??timer:要修改超时时间(定时值)的定时器。
??expires:修改后的超时时间。
??返回值: 0,调用 mod_timer 函数前定时器未被激活; 1,调用 mod_timer 函数前定时器已被激活。
??关于内核定时器常用的 API 函数就讲这些,内核定时器一般的使用流程如下所示:

struct timer_list timer; /* 定义定时器 */
/* 定时器回调函数 */
void function(unsigned long arg)
{
/*
* 定时器处理代码
 */

 /* 如果需要定时器周期性运行的话就使用 mod_timer
* 函数重新设置超时值并且启动定时器。
*/
mod_timer(&dev->timertest, jiffies + msecs_to_jiffies(2000));
}

/* 初始化函数 */
 void init(void)
 {
init_timer(&timer); /* 初始化定时器 */

 timer.function = function; /* 设置定时处理函数 */
timer.expires=jffies + msecs_to_jiffies(2000);/* 超时时间 2 秒 */
timer.data = (unsigned long)&dev; /* 将设备结构体作为参数 */

add_timer(&timer); /* 启动定时器 */
 }

/* 退出函数 */
 void exit(void)
 {
 del_timer(&timer); /* 删除定时器 */
 /* 或者使用 */
 del_timer_sync(&timer);
 }

3. Linux 内核短延时函数

??有时候我们需要在内核中实现短延时,尤其是在 Linux 驱动中。 Linux 内核提供了毫秒、微秒和纳秒延时函数,这三个函数如表所示:
在这里插入图片描述

定时器驱动程序编写

timer.c:

#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ide.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/gpio.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_gpio.h>
#include <linux/semaphore.h>
#include <linux/timer.h>
#include <asm/mach/map.h>
#include <asm/uaccess.h>
#include <asm/io.h>

#define TIMER_CNT		1		/* 设备号个数 	*/
#define TIMER_NAME		"timer"	/* 名字 		*/
#define CLOSE_CMD 		(_IO(0XEF, 0x1))	/* 关闭定时器 */
#define OPEN_CMD		(_IO(0XEF, 0x2))	/* 打开定时器 */
#define SETPERIOD_CMD	(_IO(0XEF, 0x3))	/* 设置定时器周期命令 */
#define LEDON 			1		/* 开灯 */
#define LEDOFF 			0		/* 关灯 */

/* timer设备结构体 */
struct timer_dev{
	dev_t devid;			/* 设备号 	 */
	struct cdev cdev;		/* cdev 	*/
	struct class *class;	/* 类 		*/
	struct device *device;	/* 设备 	 */
	int major;				/* 主设备号	  */
	int minor;				/* 次设备号   */
	struct device_node	*nd; /* 设备节点 */
	int led_gpio;			/* key所使用的GPIO编号		*/
	int timeperiod; 		/* 定时周期,单位为ms */
	struct timer_list timer;/* 定义一个定时器*/
	spinlock_t lock;		/* 定义自旋锁 */
};

struct timer_dev timerdev;	/* timer设备 */

/*
 * @description	: 初始化LED灯IO,open函数打开驱动的时候
 * 				  初始化LED灯所使用的GPIO引脚。
 * @param 		: 无
 * @return 		: 无
 */
static int led_init(void)
{
	int ret = 0;

	timerdev.nd = of_find_node_by_path("/gpioled");
	if (timerdev.nd== NULL) {
		return -EINVAL;
	}

	timerdev.led_gpio = of_get_named_gpio(timerdev.nd ,"led-gpio", 0);
	if (timerdev.led_gpio < 0) {
		printk("can't get led\r\n");
		return -EINVAL;
	}
	
	/* 初始化led所使用的IO */
	gpio_request(timerdev.led_gpio, "led");		/* 请求IO 	*/
	ret = gpio_direction_output(timerdev.led_gpio, 1);
	if(ret < 0) {
		printk("can't set gpio!\r\n");
	}
	return 0;
}

/*
 * @description		: 打开设备
 * @param - inode 	: 传递给驱动的inode
 * @param - filp 	: 设备文件,file结构体有个叫做private_data的成员变量
 * 					  一般在open的时候将private_data指向设备结构体。
 * @return 			: 0 成功;其他 失败
 */
static int timer_open(struct inode *inode, struct file *filp)
{
	int ret = 0;
	filp->private_data = &timerdev;	/* 设置私有数据 */

	timerdev.timeperiod = 1000;		/* 默认周期为1s */
	ret = led_init();				/* 初始化LED IO */
	if (ret < 0) {
		return ret;
	}

	return 0;
}

/*
 * @description		: ioctl函数,
 * @param - filp 	: 要打开的设备文件(文件描述符)
 * @param - cmd 	: 应用程序发送过来的命令
 * @param - arg 	: 参数
 * @return 			: 0 成功;其他 失败
 */
static long timer_unlocked_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
	struct timer_dev *dev =  (struct timer_dev *)filp->private_data;
	int timerperiod;
	unsigned long flags;
	
	switch (cmd) {
		case CLOSE_CMD:		/* 关闭定时器 */
			del_timer_sync(&dev->timer);
			break;
		case OPEN_CMD:		/* 打开定时器 */
			spin_lock_irqsave(&dev->lock, flags);
			timerperiod = dev->timeperiod;
			spin_unlock_irqrestore(&dev->lock, flags);
			mod_timer(&dev->timer, jiffies + msecs_to_jiffies(timerperiod));
			break;
		case SETPERIOD_CMD: /* 设置定时器周期 */
			spin_lock_irqsave(&dev->lock, flags);
			dev->timeperiod = arg;
			spin_unlock_irqrestore(&dev->lock, flags);
			mod_timer(&dev->timer, jiffies + msecs_to_jiffies(arg));
			break;
		default:
			break;
	}
	return 0;
}

/* 设备操作函数 */
static struct file_operations timer_fops = {
	.owner = THIS_MODULE,
	.open = timer_open,
	.unlocked_ioctl = timer_unlocked_ioctl,
};

/* 定时器回调函数 */
void timer_function(unsigned long arg)
{
	struct timer_dev *dev = (struct timer_dev *)arg;
	static int sta = 1;
	int timerperiod;
	unsigned long flags;

	sta = !sta;		/* 每次都取反,实现LED灯反转 */
	gpio_set_value(dev->led_gpio, sta);
	
	/* 重启定时器 */
	spin_lock_irqsave(&dev->lock, flags);
	timerperiod = dev->timeperiod;
	spin_unlock_irqrestore(&dev->lock, flags);
	mod_timer(&dev->timer, jiffies + msecs_to_jiffies(dev->timeperiod)); 
 }

/*
 * @description	: 驱动入口函数
 * @param 		: 无
 * @return 		: 无
 */
static int __init timer_init(void)
{
	/* 初始化自旋锁 */
	spin_lock_init(&timerdev.lock);

	/* 注册字符设备驱动 */
	/* 1、创建设备号 */
	if (timerdev.major) {		/*  定义了设备号 */
		timerdev.devid = MKDEV(timerdev.major, 0);
		register_chrdev_region(timerdev.devid, TIMER_CNT, TIMER_NAME);
	} else {						/* 没有定义设备号 */
		alloc_chrdev_region(&timerdev.devid, 0, TIMER_CNT, TIMER_NAME);	/* 申请设备号 */
		timerdev.major = MAJOR(timerdev.devid);	/* 获取分配号的主设备号 */
		timerdev.minor = MINOR(timerdev.devid);	/* 获取分配号的次设备号 */
	}
	
	/* 2、初始化cdev */
	timerdev.cdev.owner = THIS_MODULE;
	cdev_init(&timerdev.cdev, &timer_fops);
	
	/* 3、添加一个cdev */
	cdev_add(&timerdev.cdev, timerdev.devid, TIMER_CNT);

	/* 4、创建类 */
	timerdev.class = class_create(THIS_MODULE, TIMER_NAME);
	if (IS_ERR(timerdev.class)) {
		return PTR_ERR(timerdev.class);
	}

	/* 5、创建设备 */
	timerdev.device = device_create(timerdev.class, NULL, timerdev.devid, NULL, TIMER_NAME);
	if (IS_ERR(timerdev.device)) {
		return PTR_ERR(timerdev.device);
	}
	
	/* 6、初始化timer,设置定时器处理函数,还未设置周期,所有不会激活定时器 */
	init_timer(&timerdev.timer);
	timerdev.timer.function = timer_function;
	timerdev.timer.data = (unsigned long)&timerdev;
	return 0;
}

/*
 * @description	: 驱动出口函数
 * @param 		: 无
 * @return 		: 无
 */
static void __exit timer_exit(void)
{
	
	gpio_set_value(timerdev.led_gpio, 1);	/* 卸载驱动的时候关闭LED */
	del_timer_sync(&timerdev.timer);		/* 删除timer */
#if 0
	del_timer(&timerdev.tiemr);
#endif

	/* 注销字符设备驱动 */
	cdev_del(&timerdev.cdev);/*  删除cdev */
	unregister_chrdev_region(timerdev.devid, TIMER_CNT); /* 注销设备号 */

	device_destroy(timerdev.class, timerdev.devid);
	class_destroy(timerdev.class);
}

module_init(timer_init);
module_exit(timer_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("jiajia2020");

timerApp.c:

#include "stdio.h"
#include "unistd.h"
#include "sys/types.h"
#include "sys/stat.h"
#include "fcntl.h"
#include "stdlib.h"
#include "string.h"
#include "linux/ioctl.h"


/* 命令值 */
#define CLOSE_CMD 		(_IO(0XEF, 0x1))	/* 关闭定时器 */
#define OPEN_CMD		(_IO(0XEF, 0x2))	/* 打开定时器 */
#define SETPERIOD_CMD	(_IO(0XEF, 0x3))	/* 设置定时器周期命令 */

/*
 * @description		: main主程序
 * @param - argc 	: argv数组元素个数
 * @param - argv 	: 具体参数
 * @return 			: 0 成功;其他 失败
 */
int main(int argc, char *argv[])
{
	int fd, ret;
	char *filename;
	unsigned int cmd;
	unsigned int arg;
	unsigned char str[100];

	if (argc != 2) {
		printf("Error Usage!\r\n");
		return -1;
	}

	filename = argv[1];

	fd = open(filename, O_RDWR);
	if (fd < 0) {
		printf("Can't open file %s\r\n", filename);
		return -1;
	}

	while (1) {
		printf("Input CMD:");
		ret = scanf("%d", &cmd);
		if (ret != 1) {				/* 参数输入错误 */
			gets(str);				/* 防止卡死 */
		}

		if(cmd == 1)				/* 关闭LED灯 */
			cmd = CLOSE_CMD;
		else if(cmd == 2)			/* 打开LED灯 */
			cmd = OPEN_CMD;
		else if(cmd == 3) {
			cmd = SETPERIOD_CMD;	/* 设置周期值 */
			printf("Input Timer Period:");
			ret = scanf("%d", &arg);
			if (ret != 1) {			/* 参数输入错误 */
				gets(str);			/* 防止卡死 */
			}
		}
		ioctl(fd, cmd, arg);		/* 控制定时器的打开和关闭 */	
	}

	close(fd);
}

运行测试:
在这里插入图片描述

  嵌入式 最新文章
基于高精度单片机开发红外测温仪方案
89C51单片机与DAC0832
基于51单片机宠物自动投料喂食器控制系统仿
《痞子衡嵌入式半月刊》 第 68 期
多思计组实验实验七 简单模型机实验
CSC7720
启明智显分享| ESP32学习笔记参考--PWM(脉冲
STM32初探
STM32 总结
【STM32】CubeMX例程四---定时器中断(附工
上一篇文章      下一篇文章      查看所有文章
加:2021-09-01 12:05:12  更:2021-09-01 12:07:41 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 0:46:07-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码