前言
本文主要讲述了如何在 0.96 寸 OLED上显示汉字及采集显示温湿度数据
一、SPI协议是什么?
SPI 协议是由摩托罗拉公司提出的通讯协议(Serial Peripheral Interface),即串行外围设备接口,是一种高速全双工的通信总线。它被广泛地使用在 ADC、LCD 等设备与 MCU 间,要求通讯速率较高的场合。
SPI总线是一种4线总线,因其硬件功能很强,所以与SPI有关的软件就相当简单,使中央处理器(Central Processing Unit,CPU)有更多的时间处理其他事务。正是因为这种简单易用的特性,越来越多的芯片集成了这种通信协议,比如AT91RM9200。SPI是一种高速、高效率的串行接口技术。通常由一个主模块和一个或多个从模块组成,主模块选择一个从模块进行同步通信,从而完成数据的交换。SPI是一个环形结构,通信时需要至少4根线(事实上在单向传输时3根线也可以) [1] 。 SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。也是所有基于SPI的设备共有的,它们是MISO(主设备数据输入)、MOSI(主设备数据输出)、SCLK(时钟)、CS(片选)。 (1)MISO– Master Input Slave Output,主设备数据输入,从设备数据输出; (2)MOSI– Master Output Slave Input,主设备数据输出,从设备数据输入; (3)SCLK – Serial Clock,时钟信号,由主设备产生; (4)CS – Chip Select,从设备使能信号,由主设备控制。 其中,CS是从芯片是否被主芯片选中的控制信号,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),主芯片对此从芯片的操作才有效。这就使在同一条总线上连接多个SPI设备成为可能。 接下来就负责通讯的3根线了。通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。这就是SCLK时钟线存在的原因,由SCLK提供时钟脉冲,SDI,SDO则基于此脉冲完成数据传输。数据输出通过 SDO线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。完成一位数据传输,输入也使用同样原理。因此,至少需要8次时钟信号的改变(上沿和下沿为一次),才能完成8位数据的传输。 时钟信号线SCLK只能由主设备控制,从设备不能控制。同样,在一个基于SPI的设备中,至少有一个主设备。这样的传输方式有一个优点,在数据位的传输过程中可以暂停,也就是时钟的周期可以为不等宽,因为时钟线由主设备控制,当没有时钟跳变时,从设备不采集或传送数据。SPI还是一个数据交换协议:因为SPI的数据输入和输出线独立,所以允许同时完成数据的输入和输出。芯片集成的SPI串行同步时钟极性和相位可以通过寄存器配置,IO模拟的SPI串行同步时钟需要根据从设备支持的时钟极性和相位来通讯。 最后,SPI接口的一个缺点:没有指定的流控制,没有应答机制确认是否接收到数据。 SPI的片选可以扩充选择16个外设,这时PCS输出=NPCS,说NPCS03接4-16译码器,这个译码器是需要外接4-16译码器,译码器的输入为NPCS03,输出用于16个外设的选择。
二、实验步骤
1.实验准备
野火 stm32 指南者开发板 ST-LINK V2 STM8/STM32仿真器编程器 0.96寸OLED显示屏模块0.91 1.3寸液晶屏供原理图12864屏 IIC/SPI Keil5 MDK 野火串口调试助手 具体连接请参考博客:https://blog.csdn.net/ssj925319/article/details/111588662?spm=1001.2014.3001.5502
2.代码实现
首先下载源码: 链接:https://pan.baidu.com/s/1HS33ftk3Pb7nWJRhBTLqUw 提取码:57x8 解压缩后,在 1-Demo 下选择相应的项目, 这里我选择的是 Demo_STM32 下的 0.96inch_OLED_Demo_STM32F103ZET6_Hardware_4-wire_SPI , 如图所示: 之后双击打开 PROJECT 下的工程 OLED.uvprojx 即可,如图所示:
接下来我们需要移植代码,首先移植温度数据代码中的bsp_i2c.h文件 代码如下:
#ifndef __BSP_I2C_H
#define __BSP_I2C_H
#include "sys.h"
#include "delay.h"
#include "usart.h"
#define SDA_IN() {GPIOB->CRL&=0X0FFFFFFF;GPIOB->CRL|=(u32)8<<28;}
#define SDA_OUT() {GPIOB->CRL&=0X0FFFFFFF;GPIOB->CRL|=(u32)3<<28;}
#define IIC_SCL PBout(6)
#define IIC_SDA PBout(7)
#define READ_SDA PBin(7)
void IIC_Init(void);
void read_AHT20_once(void);
void reset_AHT20(void);
void init_AHT20(void);
void startMeasure_AHT20(void);
void read_AHT20(void);
uint8_t Receive_ACK(void);
void Send_ACK(void);
void SendNot_Ack(void);
void I2C_WriteByte(uint8_t input);
uint8_t I2C_ReadByte(void);
void set_AHT20sendOutData(void);
void I2C_Start(void);
void I2C_Stop(void);
#endif
之后我们需要移植bsp_i2c.c文件(此处最好更改名称为 AHT20_sys.h,不然会重名) 代码如下:
#include "bsp_i2c.h"
#include "delay.h"
#include "string.h"
uint8_t ack_status=0;
uint8_t readByte[6];
uint32_t H1=0;
uint32_t T1=0;
uint8_t AHT20_OutData[4];
void IIC_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE );
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP ;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOB, &GPIO_InitStructure);
IIC_SCL=1;
IIC_SDA=1;
}
void read_AHT20_once(void)
{
printf("读取数据中");
delay_ms(10);
reset_AHT20();
delay_ms(10);
init_AHT20();
delay_ms(10);
startMeasure_AHT20();
delay_ms(80);
read_AHT20();
delay_ms(5);
}
void reset_AHT20(void)
{
I2C_Start();
I2C_WriteByte(0x70);
ack_status = Receive_ACK();
if(ack_status)
{
printf(">");
}
else
printf("×");
I2C_WriteByte(0xBA);
ack_status = Receive_ACK();
if(ack_status)
printf(">");
else
printf("×");
I2C_Stop();
}
void init_AHT20(void)
{
I2C_Start();
I2C_WriteByte(0x70);
ack_status = Receive_ACK();
if(ack_status)
printf(">");
else
printf("×");
I2C_WriteByte(0xE1);
ack_status = Receive_ACK();
if(ack_status)
printf(">");
else
printf("×");
I2C_WriteByte(0x08);
ack_status = Receive_ACK();
if(ack_status)
printf(">");
else
printf("×");
I2C_WriteByte(0x00);
ack_status = Receive_ACK();
if(ack_status)
printf(">");
else
printf("×");
I2C_Stop();
}
void startMeasure_AHT20(void)
{
I2C_Start();
I2C_WriteByte(0x70);
ack_status = Receive_ACK();
if(ack_status)
printf(">");
else
printf("×");
I2C_WriteByte(0xAC);
ack_status = Receive_ACK();
if(ack_status)
printf(">");
else
printf("×");
I2C_WriteByte(0x33);
ack_status = Receive_ACK();
if(ack_status)
printf(">");
else
printf("×");
I2C_WriteByte(0x00);
ack_status = Receive_ACK();
if(ack_status)
printf(">");
else
printf("×");
I2C_Stop();
}
void read_AHT20(void)
{
uint8_t i;
for(i=0; i<6; i++)
{
readByte[i]=0;
}
I2C_Start();
I2C_WriteByte(0x71);
ack_status = Receive_ACK();
readByte[0]= I2C_ReadByte();
Send_ACK();
readByte[1]= I2C_ReadByte();
Send_ACK();
readByte[2]= I2C_ReadByte();
Send_ACK();
readByte[3]= I2C_ReadByte();
Send_ACK();
readByte[4]= I2C_ReadByte();
Send_ACK();
readByte[5]= I2C_ReadByte();
SendNot_Ack();
I2C_Stop();
if( (readByte[0] & 0x68) == 0x08 )
{
H1 = readByte[1];
H1 = (H1<<8) | readByte[2];
H1 = (H1<<8) | readByte[3];
H1 = H1>>4;
H1 = (H1*1000)/1024/1024;
T1 = readByte[3];
T1 = T1 & 0x0000000F;
T1 = (T1<<8) | readByte[4];
T1 = (T1<<8) | readByte[5];
T1 = (T1*2000)/1024/1024 - 500;
AHT20_OutData[0] = (H1>>8) & 0x000000FF;
AHT20_OutData[1] = H1 & 0x000000FF;
AHT20_OutData[2] = (T1>>8) & 0x000000FF;
AHT20_OutData[3] = T1 & 0x000000FF;
}
else
{
AHT20_OutData[0] = 0xFF;
AHT20_OutData[1] = 0xFF;
AHT20_OutData[2] = 0xFF;
AHT20_OutData[3] = 0xFF;
printf("꧰üá?");
}
printf("完成!\n");
printf("----温度:%d%d.%d °C\n",T1/100,(T1/10)%10,T1%10);
printf("----湿度:%d%d.%d %%",H1/100,(H1/10)%10,H1%10);
printf("\n\n");
}
uint8_t Receive_ACK(void)
{
uint8_t result=0;
uint8_t cnt=0;
IIC_SCL = 0;
SDA_IN();
delay_us(4);
IIC_SCL = 1;
delay_us(4);
while(READ_SDA && (cnt<100))
{
cnt++;
}
IIC_SCL = 0;
delay_us(4);
if(cnt<100)
{
result=1;
}
return result;
}
void Send_ACK(void)
{
SDA_OUT();
IIC_SCL = 0;
delay_us(4);
IIC_SDA = 0;
delay_us(4);
IIC_SCL = 1;
delay_us(4);
IIC_SCL = 0;
delay_us(4);
SDA_IN();
}
void SendNot_Ack(void)
{
SDA_OUT();
IIC_SCL = 0;
delay_us(4);
IIC_SDA = 1;
delay_us(4);
IIC_SCL = 1;
delay_us(4);
IIC_SCL = 0;
delay_us(4);
IIC_SDA = 0;
delay_us(4);
}
void I2C_WriteByte(uint8_t input)
{
uint8_t i;
SDA_OUT();
for(i=0; i<8; i++)
{
IIC_SCL = 0;
delay_ms(5);
if(input & 0x80)
{
IIC_SDA = 1;
}
else
{
IIC_SDA = 0;
}
IIC_SCL = 1;
delay_ms(5);
input = (input<<1);
}
IIC_SCL = 0;
delay_us(4);
SDA_IN();
delay_us(4);
}
uint8_t I2C_ReadByte(void)
{
uint8_t resultByte=0;
uint8_t i=0, a=0;
IIC_SCL = 0;
SDA_IN();
delay_ms(4);
for(i=0; i<8; i++)
{
IIC_SCL = 1;
delay_ms(3);
a=0;
if(READ_SDA)
{
a=1;
}
else
{
a=0;
}
resultByte = (resultByte << 1) | a;
IIC_SCL = 0;
delay_ms(3);
}
SDA_IN();
delay_ms(10);
return resultByte;
}
void I2C_Start(void)
{
SDA_OUT();
IIC_SCL = 1;
delay_ms(4);
IIC_SDA = 1;
delay_ms(4);
IIC_SDA = 0;
delay_ms(4);
IIC_SCL = 0;
delay_ms(4);
}
void I2C_Stop(void)
{
SDA_OUT();
IIC_SDA = 0;
delay_ms(4);
IIC_SCL = 1;
delay_ms(4);
IIC_SDA = 1;
delay_ms(4);
}
然后我们进行sys.h文件的移植 代码如下:
#ifndef __SYS_H
#define __SYS_H
#include "stm32f10x.h"
#define SYSTEM_SUPPORT_UCOS 0
#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2))
#define MEM_ADDR(addr) *((volatile unsigned long *)(addr))
#define BIT_ADDR(addr, bitnum) MEM_ADDR(BITBAND(addr, bitnum))
#define GPIOA_ODR_Addr (GPIOA_BASE+12)
#define GPIOB_ODR_Addr (GPIOB_BASE+12)
#define GPIOC_ODR_Addr (GPIOC_BASE+12)
#define GPIOD_ODR_Addr (GPIOD_BASE+12)
#define GPIOE_ODR_Addr (GPIOE_BASE+12)
#define GPIOF_ODR_Addr (GPIOF_BASE+12)
#define GPIOG_ODR_Addr (GPIOG_BASE+12)
#define GPIOA_IDR_Addr (GPIOA_BASE+8)
#define GPIOB_IDR_Addr (GPIOB_BASE+8)
#define GPIOC_IDR_Addr (GPIOC_BASE+8)
#define GPIOD_IDR_Addr (GPIOD_BASE+8)
#define GPIOE_IDR_Addr (GPIOE_BASE+8)
#define GPIOF_IDR_Addr (GPIOF_BASE+8)
#define GPIOG_IDR_Addr (GPIOG_BASE+8)
#define PAout(n) BIT_ADDR(GPIOA_ODR_Addr,n)
#define PAin(n) BIT_ADDR(GPIOA_IDR_Addr,n)
#define PBout(n) BIT_ADDR(GPIOB_ODR_Addr,n)
#define PBin(n) BIT_ADDR(GPIOB_IDR_Addr,n)
#define PCout(n) BIT_ADDR(GPIOC_ODR_Addr,n)
#define PCin(n) BIT_ADDR(GPIOC_IDR_Addr,n)
#define PDout(n) BIT_ADDR(GPIOD_ODR_Addr,n)
#define PDin(n) BIT_ADDR(GPIOD_IDR_Addr,n)
#define PEout(n) BIT_ADDR(GPIOE_ODR_Addr,n)
#define PEin(n) BIT_ADDR(GPIOE_IDR_Addr,n)
#define PFout(n) BIT_ADDR(GPIOF_ODR_Addr,n)
#define PFin(n) BIT_ADDR(GPIOF_IDR_Addr,n)
#define PGout(n) BIT_ADDR(GPIOG_ODR_Addr,n)
#define PGin(n) BIT_ADDR(GPIOG_IDR_Addr,n)
void NVIC_Configuration(void);
#endif
之后我们还需要移植sys.c文件(此处最好更改名称为 AHT20_sys.c,不然会重名) 代码如下:
#include "sys.h"
void NVIC_Configuration(void)
{
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
}
最后我们经过添加修改相关的代码,得到了最终的代码: 代码链接:https://pan.baidu.com/s/1fWBFrqD7pWfxJk8GtWdVnA 提取码:tzrh
3.获取汉字字模
要想在 OLED 上显示英文、数字,可以直接输出显示,但要是想显示中文,就必须要对中文进行编码成点阵,因此我们需要安装以下的软件 字模软件下载链接:https://pan.baidu.com/s/1GRe2X3p2ETJJEFwXsnV1sw 提取码:fn8i 之后我们打开压缩包,点击.exe程序,如图所示: 然后我们在下面输入我们想看到的文字,例如:张博伦欢迎来到重庆交通大学 如图所示: 之后 我们需要将正向的文字左旋 90 °,然后再山下翻转,这样,OLED 上显示的文字才是正向的,如图所示: 然后我们点击生成字模,如图所示: 之后我们复制这段生成的代码,添加到gui.c 下有个 oledfont.h 头文件,打开后,将 cfont16[] 数组内的内容修改成自己的中文文字点阵即可(注意格式) 如图所示: 之后我们再把温度湿度等以同样的方式加入进去 然后我们进行编译并生成.hex文件 之后我们打开烧录程序,把程序烧进去 这个时候我是遇到了一些问题,应答的问题,解决方法呢,我们可以参照下图: 之后呢我们进行烧录,效果如下图所示:
总结
总的来说呢,这个修改程序的过程比较繁琐,需要添加很多文件和修改很多语句,不过有了大佬的帮助,代码用起来如鱼得水,效果也是非常明显
|