IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 嵌入式 -> Freertos 任务TASK(一) 任务创建 -> 正文阅读

[嵌入式]Freertos 任务TASK(一) 任务创建

任务的创建

Freertos 的任务创建难点
1)堆栈生长的方向
2)64字节的对齐
3)任务堆栈初始化

Freertos 的任务使用任务控制块来进行管理,是对任务的抽象。任务本身就是一段可执行的代码,存储在嵌入式设备的只读存储器上。为了让操作系统的调度器方便管理,把这段代码在逻辑上分割为一个任务。

Freertos 中对于任务控制块的定义

typedef struct tskTaskControlBlock       /* The old naming convention is used to prevent breaking kernel aware debuggers. */
{
    volatile StackType_t * pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack.  THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */

    #if ( portUSING_MPU_WRAPPERS == 1 )
        xMPU_SETTINGS xMPUSettings; /*< The MPU settings are defined as part of the port layer.  THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
    #endif

    ListItem_t xStateListItem;                  /*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
    ListItem_t xEventListItem;                  /*< Used to reference a task from an event list. */
    UBaseType_t uxPriority;                     /*< The priority of the task.  0 is the lowest priority. */
    StackType_t * pxStack;                      /*< Points to the start of the stack. */
    char pcTaskName[ configMAX_TASK_NAME_LEN ]; /*< Descriptive name given to the task when created.  Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */

    #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
        StackType_t * pxEndOfStack; /*< Points to the highest valid address for the stack. */
    #endif

    #if ( portCRITICAL_NESTING_IN_TCB == 1 )
        UBaseType_t uxCriticalNesting; /*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
    #endif

    #if ( configUSE_TRACE_FACILITY == 1 )
        UBaseType_t uxTCBNumber;  /*< Stores a number that increments each time a TCB is created.  It allows debuggers to determine when a task has been deleted and then recreated. */
        UBaseType_t uxTaskNumber; /*< Stores a number specifically for use by third party trace code. */
    #endif

    #if ( configUSE_MUTEXES == 1 )
        UBaseType_t uxBasePriority; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */
        UBaseType_t uxMutexesHeld;
    #endif

    #if ( configUSE_APPLICATION_TASK_TAG == 1 )
        TaskHookFunction_t pxTaskTag;
    #endif

    #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
        void * pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
    #endif

    #if ( configGENERATE_RUN_TIME_STATS == 1 )
        configRUN_TIME_COUNTER_TYPE ulRunTimeCounter; /*< Stores the amount of time the task has spent in the Running state. */
    #endif

    #if ( configUSE_NEWLIB_REENTRANT == 1 )

        /* Allocate a Newlib reent structure that is specific to this task.
         * Note Newlib support has been included by popular demand, but is not
         * used by the FreeRTOS maintainers themselves.  FreeRTOS is not
         * responsible for resulting newlib operation.  User must be familiar with
         * newlib and must provide system-wide implementations of the necessary
         * stubs. Be warned that (at the time of writing) the current newlib design
         * implements a system-wide malloc() that must be provided with locks.
         *
         * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
         * for additional information. */
        struct  _reent xNewLib_reent;
    #endif

    #if ( configUSE_TASK_NOTIFICATIONS == 1 )
        volatile uint32_t ulNotifiedValue[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
        volatile uint8_t ucNotifyState[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
    #endif

    /* See the comments in FreeRTOS.h with the definition of
     * tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */
    #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
        uint8_t ucStaticallyAllocated;                     /*< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */
    #endif

    #if ( INCLUDE_xTaskAbortDelay == 1 )
        uint8_t ucDelayAborted;
    #endif

    #if ( configUSE_POSIX_ERRNO == 1 )
        int iTaskErrno;
    #endif
} tskTCB;

很长的代码很多成员变量。这里讨论任务必须的部分
在这里插入图片描述
每个成员的含义代码中有详细的解释,需要强调的是pxStack代表的堆栈的起始地址,就是定义的时候。那个数组的首地址,代表堆栈空间通过他找到堆栈空间。
pxTopOfStack 表示栈顶,就是下一个写入栈的位置。

初始化

    TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode,
                                    const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
                                    const uint32_t ulStackDepth,
                                    void * const pvParameters,
                                    UBaseType_t uxPriority,
                                    StackType_t * const puxStackBuffer,
                                    StaticTask_t * const pxTaskBuffer )
    {
        TCB_t * pxNewTCB;
        TaskHandle_t xReturn;

        configASSERT( puxStackBuffer != NULL );
        configASSERT( pxTaskBuffer != NULL );

        #if ( configASSERT_DEFINED == 1 )
            {
                /* Sanity check that the size of the structure used to declare a
                 * variable of type StaticTask_t equals the size of the real task
                 * structure. */
                volatile size_t xSize = sizeof( StaticTask_t );
                configASSERT( xSize == sizeof( TCB_t ) );
                ( void ) xSize; /* Prevent lint warning when configASSERT() is not used. */
            }
        #endif /* configASSERT_DEFINED */

        if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) )
        {
            /* The memory used for the task's TCB and stack are passed into this
             * function - use them. */
            pxNewTCB = ( TCB_t * ) pxTaskBuffer; /*lint !e740 !e9087 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
            pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer;

            #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
                {
                    /* Tasks can be created statically or dynamically, so note this
                     * task was created statically in case the task is later deleted. */
                    pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
                }
            #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */

            prvInitialiseNewTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, &xReturn, pxNewTCB, NULL );
            prvAddNewTaskToReadyList( pxNewTCB );
        }
        else
        {
            xReturn = NULL;
        }

        return xReturn;
    }

#endif /* SUPPORT_STATIC_ALLOCATION */

请看下图
在这里插入图片描述

动态初始化和静态初始化,所谓动静是指栈空间的创建。
初始化的部分目前看还比较单纯,传入参数赋值到对应的TCB结构体中。
重要的部分代码如下

/*-----------------------------------------------------------*/

static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
                                  const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
                                  const uint32_t ulStackDepth,
                                  void * const pvParameters,
                                  UBaseType_t uxPriority,
                                  TaskHandle_t * const pxCreatedTask,
                                  TCB_t * pxNewTCB,
                                  const MemoryRegion_t * const xRegions )
{
    StackType_t * pxTopOfStack;
    UBaseType_t x;

    #if ( portUSING_MPU_WRAPPERS == 1 )
        /* Should the task be created in privileged mode? */
        BaseType_t xRunPrivileged;

        if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
        {
            xRunPrivileged = pdTRUE;
        }
        else
        {
            xRunPrivileged = pdFALSE;
        }
        uxPriority &= ~portPRIVILEGE_BIT;
    #endif /* portUSING_MPU_WRAPPERS == 1 */

    /* Avoid dependency on memset() if it is not required. */
    #if ( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 )
        {
            /* Fill the stack with a known value to assist debugging. */
            ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) ulStackDepth * sizeof( StackType_t ) );
        }
    #endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */

    /* Calculate the top of stack address.  This depends on whether the stack
     * grows from high memory to low (as per the 80x86) or vice versa.
     * portSTACK_GROWTH is used to make the result positive or negative as required
     * by the port. */
    #if ( portSTACK_GROWTH < 0 )
        {
            pxTopOfStack = &( pxNewTCB->pxStack[ ulStackDepth - ( uint32_t ) 1 ] );
            pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /*lint !e923 !e9033 !e9078 MISRA exception.  Avoiding casts between pointers and integers is not practical.  Size differences accounted for using portPOINTER_SIZE_TYPE type.  Checked by assert(). */

            /* Check the alignment of the calculated top of stack is correct. */
            configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );

            #if ( configRECORD_STACK_HIGH_ADDRESS == 1 )
                {
                    /* Also record the stack's high address, which may assist
                     * debugging. */
                    pxNewTCB->pxEndOfStack = pxTopOfStack;
                }
            #endif /* configRECORD_STACK_HIGH_ADDRESS */
        }
    #else /* portSTACK_GROWTH */
        {
            pxTopOfStack = pxNewTCB->pxStack;

            /* Check the alignment of the stack buffer is correct. */
            configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxNewTCB->pxStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );

            /* The other extreme of the stack space is required if stack checking is
             * performed. */
            pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 );
        }
    #endif /* portSTACK_GROWTH */

    /* Store the task name in the TCB. */
    if( pcName != NULL )
    {
        for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
        {
            pxNewTCB->pcTaskName[ x ] = pcName[ x ];

            /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
             * configMAX_TASK_NAME_LEN characters just in case the memory after the
             * string is not accessible (extremely unlikely). */
            if( pcName[ x ] == ( char ) 0x00 )
            {
                break;
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }
        }

        /* Ensure the name string is terminated in the case that the string length
         * was greater or equal to configMAX_TASK_NAME_LEN. */
        pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0';
    }
    else
    {
        /* The task has not been given a name, so just ensure there is a NULL
         * terminator when it is read out. */
        pxNewTCB->pcTaskName[ 0 ] = 0x00;
    }

    /* This is used as an array index so must ensure it's not too large. */
    configASSERT( uxPriority < configMAX_PRIORITIES );

    if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
    {
        uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
    }
    else
    {
        mtCOVERAGE_TEST_MARKER();
    }

    pxNewTCB->uxPriority = uxPriority;
    #if ( configUSE_MUTEXES == 1 )
        {
            pxNewTCB->uxBasePriority = uxPriority;
            pxNewTCB->uxMutexesHeld = 0;
        }
    #endif /* configUSE_MUTEXES */

    vListInitialiseItem( &( pxNewTCB->xStateListItem ) );
    vListInitialiseItem( &( pxNewTCB->xEventListItem ) );

    /* Set the pxNewTCB as a link back from the ListItem_t.  This is so we can get
     * back to  the containing TCB from a generic item in a list. */
    listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB );

    /* Event lists are always in priority order. */
    listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
    listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB );

    #if ( portCRITICAL_NESTING_IN_TCB == 1 )
        {
            pxNewTCB->uxCriticalNesting = ( UBaseType_t ) 0U;
        }
    #endif /* portCRITICAL_NESTING_IN_TCB */

    #if ( configUSE_APPLICATION_TASK_TAG == 1 )
        {
            pxNewTCB->pxTaskTag = NULL;
        }
    #endif /* configUSE_APPLICATION_TASK_TAG */

    #if ( configGENERATE_RUN_TIME_STATS == 1 )
        {
            pxNewTCB->ulRunTimeCounter = ( configRUN_TIME_COUNTER_TYPE ) 0;
        }
    #endif /* configGENERATE_RUN_TIME_STATS */

    #if ( portUSING_MPU_WRAPPERS == 1 )
        {
            vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, ulStackDepth );
        }
    #else
        {
            /* Avoid compiler warning about unreferenced parameter. */
            ( void ) xRegions;
        }
    #endif

    #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
        {
            memset( ( void * ) &( pxNewTCB->pvThreadLocalStoragePointers[ 0 ] ), 0x00, sizeof( pxNewTCB->pvThreadLocalStoragePointers ) );
        }
    #endif

    #if ( configUSE_TASK_NOTIFICATIONS == 1 )
        {
            memset( ( void * ) &( pxNewTCB->ulNotifiedValue[ 0 ] ), 0x00, sizeof( pxNewTCB->ulNotifiedValue ) );
            memset( ( void * ) &( pxNewTCB->ucNotifyState[ 0 ] ), 0x00, sizeof( pxNewTCB->ucNotifyState ) );
        }
    #endif

    #if ( configUSE_NEWLIB_REENTRANT == 1 )
        {
            /* Initialise this task's Newlib reent structure.
             * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
             * for additional information. */
            _REENT_INIT_PTR( ( &( pxNewTCB->xNewLib_reent ) ) );
        }
    #endif

    #if ( INCLUDE_xTaskAbortDelay == 1 )
        {
            pxNewTCB->ucDelayAborted = pdFALSE;
        }
    #endif

    /* Initialize the TCB stack to look as if the task was already running,
     * but had been interrupted by the scheduler.  The return address is set
     * to the start of the task function. Once the stack has been initialised
     * the top of stack variable is updated. */
    #if ( portUSING_MPU_WRAPPERS == 1 )
        {
            /* If the port has capability to detect stack overflow,
             * pass the stack end address to the stack initialization
             * function as well. */
            #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
                {
                    #if ( portSTACK_GROWTH < 0 )
                        {
                            pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters, xRunPrivileged );
                        }
                    #else /* portSTACK_GROWTH */
                        {
                            pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters, xRunPrivileged );
                        }
                    #endif /* portSTACK_GROWTH */
                }
            #else /* portHAS_STACK_OVERFLOW_CHECKING */
                {
                    pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged );
                }
            #endif /* portHAS_STACK_OVERFLOW_CHECKING */
        }
    #else /* portUSING_MPU_WRAPPERS */
        {
            /* If the port has capability to detect stack overflow,
             * pass the stack end address to the stack initialization
             * function as well. */
            #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
                {
                    #if ( portSTACK_GROWTH < 0 )
                        {
                            pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters );
                        }
                    #else /* portSTACK_GROWTH */
                        {
                            pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters );
                        }
                    #endif /* portSTACK_GROWTH */
                }
            #else /* portHAS_STACK_OVERFLOW_CHECKING */
                {
                    pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
                }
            #endif /* portHAS_STACK_OVERFLOW_CHECKING */
        }
    #endif /* portUSING_MPU_WRAPPERS */

    if( pxCreatedTask != NULL )
    {
        /* Pass the handle out in an anonymous way.  The handle can be used to
         * change the created task's priority, delete the created task, etc.*/
        *pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
    }
    else
    {
        mtCOVERAGE_TEST_MARKER();
    }
}

在这里插入图片描述
堆栈方向的理解

‘push’ 指令之后, sp (stack pointer)寄存器数值变大了,就是‘向上(高地址)长’;

反之,‘push’ 指令之后, sp (stack pointer)寄存器数值变小了,就是‘向下(低地址)长’。

上图标注了,不同的堆栈生长方向情况下,堆栈指针的初始化情况。

堆栈的初始化

模拟一次堆栈入栈,是个时候任务函数指针终于排上用场。被填入到PC寄存器对应的栈位。
下一次正常做上下文切换的入栈时,任务函数的地址就会推入PC指针,任务得以开始启动。

在这里插入图片描述

字节对齐

可以理解为,处理器数据总线的宽度,如果地址按照字节的单次变动小于宽度,那么指针不会移动。所以确保指针能有效移动,需要进行对齐。N*length 1>=1 就可以有效移动指针。

总结

任务的初始化,包含两部分
1.用户设定的各种数据进行装填,归总到TCB上
2.对任务内存空间初始化主要是栈的初始化
模拟一次任务的入栈是程序第一次得以运行的保证

  嵌入式 最新文章
基于高精度单片机开发红外测温仪方案
89C51单片机与DAC0832
基于51单片机宠物自动投料喂食器控制系统仿
《痞子衡嵌入式半月刊》 第 68 期
多思计组实验实验七 简单模型机实验
CSC7720
启明智显分享| ESP32学习笔记参考--PWM(脉冲
STM32初探
STM32 总结
【STM32】CubeMX例程四---定时器中断(附工
上一篇文章      下一篇文章      查看所有文章
加:2021-11-22 12:30:12  更:2021-11-22 12:31:42 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/8 4:23:23-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码