IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 嵌入式 -> 基于I2C/SPI总线的温湿度采集与OLED显示 -> 正文阅读

[嵌入式]基于I2C/SPI总线的温湿度采集与OLED显示

目录

一、I2C总线协议了解

?1、I2C协议含义:

2、I2C 协议的物理层和协议层

①物理层

?②协议层

?3、12C的两种方式——硬件I2C和软件I2C

①硬件I2C

②软件I2C

③两者的差别

二、温度采集至上机位

1、主要代码:

2、编译并烧录

三、基于SPI的OLED显示?

1、SPI协议简介:

2、OLED引脚接法

3、修改代码?

4、效果呈现

1、编译烧录进板

2、结果呈现?

四、 显示温度和湿度

1、主要代码

?2、编译烧录进板效果呈现

五、滑动显示长字符

1、代码

2、编译烧录进板

3、结果呈现?

?六、参考文献


一、I2C总线协议了解

?1、I2C协议含义:

????????I2C 通讯协议(Inter-Integrated Circuit)是由 Phiilps 公司开发的,由于它引脚少,硬件实现简单,可扩展性强,不需要 USART、CAN 等通讯协议的外部收发设备,现在被广泛地使用在系统内多个集成电路(IC)间的通讯。

2、I2C 协议的物理层和协议层

①物理层

I2C是一个支持设备的总线。可连接多个 I2C 通讯设备,支持多个通讯主机及多个通讯从机。对于I2C 总线,只使用两条总线线路,一条双向串行数据线(SDA) ,一条串行时钟线(SCL)。
I2C 通讯设备常用连接方式(引用野火资料中的图)

?②协议层

主要是定义了通讯的起始和停止信号、数据有效性、响应、仲裁、时钟同步和地址广播等。

通讯的起始和停止信号

当?SCL?线是高电平时 SDA?线从高电平向低电平切换,这个情况表示通讯的起始。

当?SCL?是高电平时?SDA线由低电平向高电平切换,表示通讯的停止。

?可以看出I2C在通讯的时候,只有在SCL处于高电平时,SDA的数据传输才是有效的。SDA 信号线是用于传输数据,SCL 信号线是保证数据同步。

?当SDA传输数据后,接收方对接受到的数据进行一个应答。如果希望继续进行传输数据,则回应应答信号(低电平),否则回应非应答信号(高电平)。

?3、12C的两种方式——硬件I2C和软件I2C

①硬件I2C

直接利用 STM32 芯片中的硬件 I2C 外设。

硬件I2C的使用
只要配置好对应的寄存器,外设就会产生标准串口协议的时序。在初始化好 I2C 外设后,只需要把某寄存器位置 1,此时外设就会控制对应的 SCL 及 SDA 线自动产生 I2C 起始信号,不需要内核直接控制引脚的电平。

②软件I2C

直接使用 CPU 内核按照 I2C 协议的要求控制 GPIO 输出高低电平,从而模拟I2C。

软件I2C的使用
需要在控制产生 I2C 的起始信号时,控制作为 SCL 线的 GPIO 引脚输出高电平,然后控制作为 SDA 线的 GPIO 引脚在此期间完成由高电平至低电平的切换,最后再控制SCL 线切换为低电平,这样就输出了一个标准的 I2C 起始信号。

③两者的差别

硬件 I2C 直接使用外设来控制引脚,可以减轻 CPU 的负担。不过使用硬件I2C 时必须使用某些固定的引脚作为 SCL 和 SDA,软件模拟 I2C 则可以使用任意 GPIO 引脚,相对比较灵活。对于硬件I2C用法比较复杂,软件I2C的流程更清楚一些。如果要详细了解I2C的协议,使用软件I2C可能更好的理解这个过程。在使用I2C过程,硬件I2C可能通信更加快,更加稳定。

二、温度采集至上机位

1、主要代码:

mian.c:

#include "delay.h"
#include "usart.h"
#include "bsp_i2c.h"


int main(void)
{	
	delay_init();     //延时初始化  
	uart_init(115200);	 //串口初始化
	IIC_Init();
		while(1)
	{
		printf("温度湿度显示");
		read_AHT20_once();
		delay_ms(1500);
  }
}

bsp_i2c.c:

#include "bsp_i2c.h"
#include "delay.h"

uint8_t   ack_status=0;
uint8_t   readByte[6];
uint8_t   AHT20_status=0;

uint32_t  H1=0;  //Humility
uint32_t  T1=0;  //Temperature

uint8_t  AHT20_OutData[4];
uint8_t  AHT20sendOutData[10] = {0xFA, 0x06, 0x0A, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF};

void IIC_Init(void)
{					     
	GPIO_InitTypeDef GPIO_InitStructure;
	RCC_APB2PeriphClockCmd(	RCC_APB2Periph_GPIOB, ENABLE );	
	   
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6|GPIO_Pin_7;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP ;   //í?íìê?3?
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOB, &GPIO_InitStructure);
 
	IIC_SCL=1;
	IIC_SDA=1;
 
}
//2úéúIIC?eê?D?o?
void IIC_Start(void)
{
	SDA_OUT();     //sda??ê?3?
	IIC_SDA=1;	  	  
	IIC_SCL=1;
	delay_us(4);
 	IIC_SDA=0;//START:when CLK is high,DATA change form high to low 
	delay_us(4);
	IIC_SCL=0;//?ˉ×?I2C×ü??£?×?±?·¢?í?ò?óê?êy?Y 
}	  
//2úéúIICí£?1D?o?
void IIC_Stop(void)
{
	SDA_OUT();//sda??ê?3?
	IIC_SCL=0;
	IIC_SDA=0;//STOP:when CLK is high DATA change form low to high
 	delay_us(4);
	IIC_SCL=1; 
	IIC_SDA=1;//·¢?íI2C×ü???áê?D?o?
	delay_us(4);							   	
}
//μè′yó|′eD?o?μ?à′
//·μ???μ£o1£??óê?ó|′e꧰ü
//        0£??óê?ó|′e3é1|
u8 IIC_Wait_Ack(void)
{
	u8 ucErrTime=0;
	SDA_IN();      //SDAéè???aê?è?  
	IIC_SDA=1;delay_us(1);	   
	IIC_SCL=1;delay_us(1);	 
	while(READ_SDA)
	{
		ucErrTime++;
		if(ucErrTime>250)
		{
			IIC_Stop();
			return 1;
		}
	}
	IIC_SCL=0;//ê±?óê?3?0 	   
	return 0;  
} 
//2úéúACKó|′e
void IIC_Ack(void)
{
	IIC_SCL=0;
	SDA_OUT();
	IIC_SDA=0;
	delay_us(2);
	IIC_SCL=1;
	delay_us(2);
	IIC_SCL=0;
}
//2?2úéúACKó|′e		    
void IIC_NAck(void)
{
	IIC_SCL=0;
	SDA_OUT();
	IIC_SDA=1;
	delay_us(2);
	IIC_SCL=1;
	delay_us(2);
	IIC_SCL=0;
}					 				     
//IIC·¢?íò???×??ú
//·μ??′ó?úóD?Tó|′e
//1£?óDó|′e
//0£??Tó|′e			  
void IIC_Send_Byte(u8 txd)
{                        
    u8 t;   
		SDA_OUT(); 	    
    IIC_SCL=0;//à-μíê±?ó?aê?êy?Y′?ê?
    for(t=0;t<8;t++)
    {              
        IIC_SDA=(txd&0x80)>>7;
        txd<<=1; 	  
		delay_us(2);   //??TEA5767?aèy???óê±??ê?±?D?μ?
		IIC_SCL=1;
		delay_us(2); 
		IIC_SCL=0;	
		delay_us(2);
    }	 
} 	    
//?á1??×??ú£?ack=1ê±£?·¢?íACK£?ack=0£?·¢?ínACK   
u8 IIC_Read_Byte(unsigned char ack)
{
	unsigned char i,receive=0;
	SDA_IN();//SDAéè???aê?è?
  for(i=0;i<8;i++ )
	{
    IIC_SCL=0; 
    delay_us(2);
		IIC_SCL=1;
    receive<<=1;
    if(READ_SDA)receive++;   
		delay_us(1); 
  }					 
	if (!ack)
			IIC_NAck();//·¢?ínACK
	else
			IIC_Ack(); //·¢?íACK   
	return receive;
}
 
void IIC_WriteByte(uint16_t addr,uint8_t data,uint8_t device_addr)
{
	IIC_Start();  
	
	if(device_addr==0xA0) //eepromμ??·′óóú1×??ú
		IIC_Send_Byte(0xA0 + ((addr/256)<<1));//·¢?í??μ??·
	else
		IIC_Send_Byte(device_addr);	    //·¢?÷?tμ??·
	IIC_Wait_Ack(); 
	IIC_Send_Byte(addr&0xFF);   //·¢?íμíμ??·
	IIC_Wait_Ack(); 
	IIC_Send_Byte(data);     //·¢?í×??ú							   
	IIC_Wait_Ack();  		    	   
  IIC_Stop();//2úéúò???í£?1ì??t 
	if(device_addr==0xA0) //
		delay_ms(10);
	else
		delay_us(2);
}
 
uint16_t IIC_ReadByte(uint16_t addr,uint8_t device_addr,uint8_t ByteNumToRead)  //?á??′??÷?ò?áêy?Y
{	
		uint16_t data;
		IIC_Start();  
		if(device_addr==0xA0)
			IIC_Send_Byte(0xA0 + ((addr/256)<<1));
		else
			IIC_Send_Byte(device_addr);	
		IIC_Wait_Ack();
		IIC_Send_Byte(addr&0xFF);   //·¢?íμíμ??·
		IIC_Wait_Ack(); 
 
		IIC_Start();  	
		IIC_Send_Byte(device_addr+1);	    //·¢?÷?tμ??·
		IIC_Wait_Ack();
		if(ByteNumToRead == 1)//LM75???èêy?Y?a11bit
		{
			data=IIC_Read_Byte(0);
		}
		else
			{
				data=IIC_Read_Byte(1);
				data=(data<<8)+IIC_Read_Byte(0);
			}
		IIC_Stop();//2úéúò???í£?1ì??t	    
		return data;
}


/**********
*é???2?·??aIO?ú?£?éI2C????
*
*′ó?aò????aê??aAHT20μ?????I2C
*oˉêy??óDIICoíI2Cμ???±e£???×¢òa£?£?£?£?£?
*
*2020/2/23×?oóDT??è??ú
*
***********/
void  read_AHT20_once(void)
{
	delay_ms(10);

	reset_AHT20();
	delay_ms(10);

	init_AHT20();
	delay_ms(10);

	startMeasure_AHT20();
	delay_ms(80);

	read_AHT20();
	delay_ms(5);
}


void  reset_AHT20(void)
{

	I2C_Start();

	I2C_WriteByte(0x70);
	ack_status = Receive_ACK();
	if(ack_status) printf("1");
	else printf("1-n-");
	I2C_WriteByte(0xBA);
	ack_status = Receive_ACK();
		if(ack_status) printf("2");
	else printf("2-n-");
	I2C_Stop();

	/*
	AHT20_OutData[0] = 0;
	AHT20_OutData[1] = 0;
	AHT20_OutData[2] = 0;
	AHT20_OutData[3] = 0;
	*/
}



void  init_AHT20(void)
{
	I2C_Start();

	I2C_WriteByte(0x70);
	ack_status = Receive_ACK();
	if(ack_status) printf("3");
	else printf("3-n-");	
	I2C_WriteByte(0xE1);
	ack_status = Receive_ACK();
	if(ack_status) printf("4");
	else printf("4-n-");
	I2C_WriteByte(0x08);
	ack_status = Receive_ACK();
	if(ack_status) printf("5");
	else printf("5-n-");
	I2C_WriteByte(0x00);
	ack_status = Receive_ACK();
	if(ack_status) printf("6");
	else printf("6-n-");
	I2C_Stop();
}



void  startMeasure_AHT20(void)
{
	//------------
	I2C_Start();

	I2C_WriteByte(0x70);
	ack_status = Receive_ACK();
	if(ack_status) printf("7");
	else printf("7-n-");
	I2C_WriteByte(0xAC);
	ack_status = Receive_ACK();
	if(ack_status) printf("8");
	else printf("8-n-");
	I2C_WriteByte(0x33);
	ack_status = Receive_ACK();
	if(ack_status) printf("9");
	else printf("9-n-");
	I2C_WriteByte(0x00);
	ack_status = Receive_ACK();
	if(ack_status) printf("10");
	else printf("10-n-");
	I2C_Stop();
}



void read_AHT20(void)
{
	uint8_t   i;

	for(i=0; i<6; i++)
	{
		readByte[i]=0;
	}

	//-------------
	I2C_Start();

	I2C_WriteByte(0x71);
	ack_status = Receive_ACK();
	readByte[0]= I2C_ReadByte();
	Send_ACK();

	readByte[1]= I2C_ReadByte();
	Send_ACK();

	readByte[2]= I2C_ReadByte();
	Send_ACK();

	readByte[3]= I2C_ReadByte();
	Send_ACK();

	readByte[4]= I2C_ReadByte();
	Send_ACK();

	readByte[5]= I2C_ReadByte();
	SendNot_Ack();
	//Send_ACK();

	I2C_Stop();

	//--------------
	if( (readByte[0] & 0x68) == 0x08 )
	{
		H1 = readByte[1];
		H1 = (H1<<8) | readByte[2];
		H1 = (H1<<8) | readByte[3];
		H1 = H1>>4;

		H1 = (H1*1000)/1024/1024;

		T1 = readByte[3];
		T1 = T1 & 0x0000000F;
		T1 = (T1<<8) | readByte[4];
		T1 = (T1<<8) | readByte[5];

		T1 = (T1*2000)/1024/1024 - 500;

		AHT20_OutData[0] = (H1>>8) & 0x000000FF;
		AHT20_OutData[1] = H1 & 0x000000FF;

		AHT20_OutData[2] = (T1>>8) & 0x000000FF;
		AHT20_OutData[3] = T1 & 0x000000FF;
	}
	else
	{
		AHT20_OutData[0] = 0xFF;
		AHT20_OutData[1] = 0xFF;

		AHT20_OutData[2] = 0xFF;
		AHT20_OutData[3] = 0xFF;
		printf("lyy");

	}
	printf("\r\n");
	printf("温度:%d%d.%d",T1/100,(T1/10)%10,T1%10);
	printf("湿度:%d%d.%d",H1/100,(H1/10)%10,H1%10);
	printf("\r\n");
}




uint8_t  Receive_ACK(void)
{
	uint8_t result=0;
	uint8_t cnt=0;

	IIC_SCL = 0;
	SDA_IN(); 
	delay_us(4);

	IIC_SCL = 1;
	delay_us(4);

	while(READ_SDA && (cnt<100))
	{
		cnt++;
	}

	IIC_SCL = 0;
	delay_us(4);

	if(cnt<100)
	{
		result=1;
	}
	return result;
}



void  Send_ACK(void)
{
	SDA_OUT();
	IIC_SCL = 0;
	delay_us(4);

	IIC_SDA = 0;
	delay_us(4);

	IIC_SCL = 1;
	delay_us(4);
	IIC_SCL = 0;
	delay_us(4);

	SDA_IN();
}



void  SendNot_Ack(void)
{
	SDA_OUT();
	IIC_SCL = 0;
	delay_us(4);

	IIC_SDA = 1;
	delay_us(4);

	IIC_SCL = 1;
	delay_us(4);

	IIC_SCL = 0;
	delay_us(4);

	IIC_SDA = 0;
	delay_us(4);
}


void I2C_WriteByte(uint8_t  input)
{
	uint8_t  i;
	SDA_OUT();
	for(i=0; i<8; i++)
	{
		IIC_SCL = 0;
		delay_ms(5);

		if(input & 0x80)
		{
			IIC_SDA = 1;
			//delaymm(10);
		}
		else
		{
			IIC_SDA = 0;
			//delaymm(10);
		}

		IIC_SCL = 1;
		delay_ms(5);

		input = (input<<1);
	}

	IIC_SCL = 0;
	delay_us(4);

	SDA_IN();
	delay_us(4);
}	


uint8_t I2C_ReadByte(void)
{
	uint8_t  resultByte=0;
	uint8_t  i=0, a=0;

	IIC_SCL = 0;
	SDA_IN();
	delay_ms(4);

	for(i=0; i<8; i++)
	{
		IIC_SCL = 1;
		delay_ms(3);

		a=0;
		if(READ_SDA)
		{
			a=1;
		}
		else
		{
			a=0;
		}

		//resultByte = resultByte | a;
		resultByte = (resultByte << 1) | a;

		IIC_SCL = 0;
		delay_ms(3);
	}

	SDA_IN();
	delay_ms(10);

	return   resultByte;
}


void  set_AHT20sendOutData(void)
{
	/* --------------------------
	 * 0xFA 0x06 0x0A temperature(2 Bytes) humility(2Bytes) short Address(2 Bytes)
	 * And Check (1 byte)
	 * -------------------------*/
	AHT20sendOutData[3] = AHT20_OutData[0];
	AHT20sendOutData[4] = AHT20_OutData[1];
	AHT20sendOutData[5] = AHT20_OutData[2];
	AHT20sendOutData[6] = AHT20_OutData[3];

//	AHT20sendOutData[7] = (drf1609.shortAddress >> 8) & 0x00FF;
//	AHT20sendOutData[8] = drf1609.shortAddress  & 0x00FF;

//	AHT20sendOutData[9] = getXY(AHT20sendOutData,10);
}


void  I2C_Start(void)
{
	SDA_OUT();
	IIC_SCL = 1;
	delay_ms(4);

	IIC_SDA = 1;
	delay_ms(4);
	IIC_SDA = 0;
	delay_ms(4);

	IIC_SCL = 0;
	delay_ms(4);
}



void  I2C_Stop(void)
{
	SDA_OUT();
	IIC_SDA = 0;
	delay_ms(4);

	IIC_SCL = 1;
	delay_ms(4);

	IIC_SDA = 1;
	delay_ms(4);
}

2、编译并烧录

通过编译获得hex文件:

?烧录进板

?连接串口结果展示:

三、基于SPI的OLED显示?

1、SPI协议简介:

SPI定义:

SPI 协议是由摩托罗拉公司提出的通讯协议 (Serial Peripheral Interface) ,即串行外围设
备接口,是一种高速全双工的通信总线。它被广泛地使用在 ADC 、 LCD 等设备与 MCU 间,
要求通讯速率较高的场合。

SPI物理层:

SS( Slave Select):从设备选择信号线,常称为片选信号线。
SCK (Serial Clock):时钟信号线,用于通讯数据同步。
MOSI (Master Output, Slave Input):主设备输出/从设备输入引脚。
MISO(Master Input,,Slave Output):主设备输入/从设备输出引脚。

SPI协议层

SPI?基本通讯过程

MOSI 与 MISO 的信号只在 NSS 为低电平的时候才有效,在 SCK 的每个时钟周期 MOSI 和 MISO 传输一位数据。?

通讯的起始和停止信号
在图 25-2 中的标号① 处, NSS 信号线由高变低,是 SPI 通讯的起始信号。 NSS 是每个
从机各自独占的信号线,当从机在自己的 NSS 线检测到起始信号后,就知道自己被主机选
中了,开始准备与主机通讯。在图中的标号⑥ 处, NSS 信号由低变高,是 SPI 通讯的停止
信号,表示本次通讯结束,从机的选中状态被取消。
数据有效性

SPI 使用 MOSI 及 MISO 信号线来传输数据,使用 SCK 信号线进行数据同步。 MOSI 及
MISO 数据线在 SCK 的每个时钟周期传输一位数据,且数据输入输出是同时进行的。数据
传输时, MSB 先行或 LSB 先行并没有作硬性规定,但要保证两个 SPI 通讯设备之间使用同
样的协定,一般都会采用图 25-2 中的 MSB 先行模式。
CPOL/CPHA 及通讯模式

2、OLED引脚接法

?0.96寸OLED显示屏相关介绍
参考下面链接:

?0.96inch SPI OLED Module - LCD wiki

3、修改代码?

修改test.c中的TEST_MainPage函数中GUI_ShowString,GUI_ShowCHinese的参数?

?获得名字的存储代码,设置字模输出选项

?输入名字:

?再将对应的字模点阵加入到oledfont.h里

主程序:

mian.c

#include "delay.h"
#include "sys.h"
#include "oled.h"
#include "gui.h"
#include "test.h"
int main(void)
{	
	delay_init();	    	       //延时函数初始化	  
	NVIC_Configuration(); 	   //设置NVIC中断分组2:2位抢占优先级,2位响应优先级 	
	OLED_Init();			         //初始化OLED  
	OLED_Clear(0);             //清屏(全黑)
	while(1) 
	{	
		TEST_MainPage();         //主界面显示测试
		
	}
}

4、效果呈现

1、编译烧录进板

编译:

?烧录:

2、结果呈现?

四、 显示温度和湿度

1、主要代码

main.c

#include "delay.h"
#include "usart.h"
#include "bsp_i2c.h"
#include "sys.h"
 
#include "oled.h"
#include "gui.h"
#include "test.h"
 
int main(void)
{	
	delay_init();	    	       //延时函数初始化    	  
	uart_init(115200);	 
	IIC_Init();
		  
	NVIC_Configuration(); 	   //设置NVIC中断分组2:2位抢占优先级,2位响应优先级 	
	OLED_Init();			         //初始化OLED  
	OLED_Clear(0); 
	while(1)
	{
		//printf("温度湿度显示");
		read_AHT20_once();
		OLED_Clear(0); 
		delay_ms(1500);
  }
}

?2、编译烧录进板效果呈现

五、滑动显示长字符

1、代码

main.c

#include "delay.h"
#include "sys.h"
#include "oled.h"
#include "gui.h"
#include "test.h"
int main(void)
{	
	delay_init();	    	       //延时函数初始化	  
	NVIC_Configuration(); 	   //设置NVIC中断分组2:2位抢占优先级,2位响应优先级 	
	OLED_Init();			         //初始化OLED  
	OLED_Clear(0);             //清屏(全黑)
	OLED_WR_Byte(0x2E,OLED_CMD);        //关闭滚动
  OLED_WR_Byte(0x27,OLED_CMD);        //水平向左或者右滚动 26/27
  OLED_WR_Byte(0x00,OLED_CMD);        //虚拟字节
	OLED_WR_Byte(0x00,OLED_CMD);        //起始页 0
	OLED_WR_Byte(0x07,OLED_CMD);        //滚动时间间隔
	OLED_WR_Byte(0x07,OLED_CMD);        //终止页 7
	OLED_WR_Byte(0x00,OLED_CMD);        //虚拟字节
	OLED_WR_Byte(0xFF,OLED_CMD);        //虚拟字节
	TEST_MainPage();
	OLED_WR_Byte(0x2F,OLED_CMD);        //开启滚动
	while(1) 
	{	
		
		
	}
}

按照上面第三的步骤修改代码:

?

2、编译烧录进板

?

3、结果呈现?

?六、参考文献

?https://blog.csdn.net/qq_43279579/article/details/111597278?

基于SPI通信方式的OLED显示_不#曾&轻听的博客-CSDN博客

基于STM32的0.96寸OLED显示屏显示数据_Harriet的博客-CSDN博客_基于stm32的oled显示时间

?

  嵌入式 最新文章
基于高精度单片机开发红外测温仪方案
89C51单片机与DAC0832
基于51单片机宠物自动投料喂食器控制系统仿
《痞子衡嵌入式半月刊》 第 68 期
多思计组实验实验七 简单模型机实验
CSC7720
启明智显分享| ESP32学习笔记参考--PWM(脉冲
STM32初探
STM32 总结
【STM32】CubeMX例程四---定时器中断(附工
上一篇文章      下一篇文章      查看所有文章
加:2021-11-24 08:06:46  更:2021-11-24 08:07:11 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/8 4:38:44-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码