目录
一、I2C总线协议了解
?1、I2C协议含义:
2、I2C 协议的物理层和协议层
①物理层
?②协议层
?3、12C的两种方式——硬件I2C和软件I2C
①硬件I2C
②软件I2C
③两者的差别
二、温度采集至上机位
1、主要代码:
2、编译并烧录
三、基于SPI的OLED显示?
1、SPI协议简介:
2、OLED引脚接法
3、修改代码?
4、效果呈现
1、编译烧录进板
2、结果呈现?
四、 显示温度和湿度
1、主要代码
?2、编译烧录进板效果呈现
五、滑动显示长字符
1、代码
2、编译烧录进板
3、结果呈现?
?六、参考文献
一、I2C总线协议了解
?1、I2C协议含义:
????????I2C 通讯协议(Inter-Integrated Circuit)是由 Phiilps 公司开发的,由于它引脚少,硬件实现简单,可扩展性强,不需要 USART、CAN 等通讯协议的外部收发设备,现在被广泛地使用在系统内多个集成电路(IC)间的通讯。
2、I2C 协议的物理层和协议层
①物理层
I2C是一个支持设备的总线。可连接多个 I2C 通讯设备,支持多个通讯主机及多个通讯从机。对于I2C 总线,只使用两条总线线路,一条双向串行数据线(SDA) ,一条串行时钟线(SCL)。 I2C 通讯设备常用连接方式(引用野火资料中的图)
?②协议层
主要是定义了通讯的起始和停止信号、数据有效性、响应、仲裁、时钟同步和地址广播等。
通讯的起始和停止信号
当?SCL?线是高电平时 SDA?线从高电平向低电平切换,这个情况表示通讯的起始。
当?SCL?是高电平时?SDA线由低电平向高电平切换,表示通讯的停止。
?可以看出I2C在通讯的时候,只有在SCL处于高电平时,SDA的数据传输才是有效的。SDA 信号线是用于传输数据,SCL 信号线是保证数据同步。
?当SDA传输数据后,接收方对接受到的数据进行一个应答。如果希望继续进行传输数据,则回应应答信号(低电平),否则回应非应答信号(高电平)。
?3、12C的两种方式——硬件I2C和软件I2C
①硬件I2C
直接利用 STM32 芯片中的硬件 I2C 外设。
硬件I2C的使用 只要配置好对应的寄存器,外设就会产生标准串口协议的时序。在初始化好 I2C 外设后,只需要把某寄存器位置 1,此时外设就会控制对应的 SCL 及 SDA 线自动产生 I2C 起始信号,不需要内核直接控制引脚的电平。
②软件I2C
直接使用 CPU 内核按照 I2C 协议的要求控制 GPIO 输出高低电平,从而模拟I2C。
软件I2C的使用 需要在控制产生 I2C 的起始信号时,控制作为 SCL 线的 GPIO 引脚输出高电平,然后控制作为 SDA 线的 GPIO 引脚在此期间完成由高电平至低电平的切换,最后再控制SCL 线切换为低电平,这样就输出了一个标准的 I2C 起始信号。
③两者的差别
硬件 I2C 直接使用外设来控制引脚,可以减轻 CPU 的负担。不过使用硬件I2C 时必须使用某些固定的引脚作为 SCL 和 SDA,软件模拟 I2C 则可以使用任意 GPIO 引脚,相对比较灵活。对于硬件I2C用法比较复杂,软件I2C的流程更清楚一些。如果要详细了解I2C的协议,使用软件I2C可能更好的理解这个过程。在使用I2C过程,硬件I2C可能通信更加快,更加稳定。
二、温度采集至上机位
1、主要代码:
mian.c:
#include "delay.h"
#include "usart.h"
#include "bsp_i2c.h"
int main(void)
{
delay_init(); //延时初始化
uart_init(115200); //串口初始化
IIC_Init();
while(1)
{
printf("温度湿度显示");
read_AHT20_once();
delay_ms(1500);
}
}
bsp_i2c.c:
#include "bsp_i2c.h"
#include "delay.h"
uint8_t ack_status=0;
uint8_t readByte[6];
uint8_t AHT20_status=0;
uint32_t H1=0; //Humility
uint32_t T1=0; //Temperature
uint8_t AHT20_OutData[4];
uint8_t AHT20sendOutData[10] = {0xFA, 0x06, 0x0A, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF};
void IIC_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOB, ENABLE );
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6|GPIO_Pin_7;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP ; //í?íìê?3?
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOB, &GPIO_InitStructure);
IIC_SCL=1;
IIC_SDA=1;
}
//2úéúIIC?eê?D?o?
void IIC_Start(void)
{
SDA_OUT(); //sda??ê?3?
IIC_SDA=1;
IIC_SCL=1;
delay_us(4);
IIC_SDA=0;//START:when CLK is high,DATA change form high to low
delay_us(4);
IIC_SCL=0;//?ˉ×?I2C×ü??£?×?±?·¢?í?ò?óê?êy?Y
}
//2úéúIICí£?1D?o?
void IIC_Stop(void)
{
SDA_OUT();//sda??ê?3?
IIC_SCL=0;
IIC_SDA=0;//STOP:when CLK is high DATA change form low to high
delay_us(4);
IIC_SCL=1;
IIC_SDA=1;//·¢?íI2C×ü???áê?D?o?
delay_us(4);
}
//μè′yó|′eD?o?μ?à′
//·μ???μ£o1£??óê?ó|′e꧰ü
// 0£??óê?ó|′e3é1|
u8 IIC_Wait_Ack(void)
{
u8 ucErrTime=0;
SDA_IN(); //SDAéè???aê?è?
IIC_SDA=1;delay_us(1);
IIC_SCL=1;delay_us(1);
while(READ_SDA)
{
ucErrTime++;
if(ucErrTime>250)
{
IIC_Stop();
return 1;
}
}
IIC_SCL=0;//ê±?óê?3?0
return 0;
}
//2úéúACKó|′e
void IIC_Ack(void)
{
IIC_SCL=0;
SDA_OUT();
IIC_SDA=0;
delay_us(2);
IIC_SCL=1;
delay_us(2);
IIC_SCL=0;
}
//2?2úéúACKó|′e
void IIC_NAck(void)
{
IIC_SCL=0;
SDA_OUT();
IIC_SDA=1;
delay_us(2);
IIC_SCL=1;
delay_us(2);
IIC_SCL=0;
}
//IIC·¢?íò???×??ú
//·μ??′ó?úóD?Tó|′e
//1£?óDó|′e
//0£??Tó|′e
void IIC_Send_Byte(u8 txd)
{
u8 t;
SDA_OUT();
IIC_SCL=0;//à-μíê±?ó?aê?êy?Y′?ê?
for(t=0;t<8;t++)
{
IIC_SDA=(txd&0x80)>>7;
txd<<=1;
delay_us(2); //??TEA5767?aèy???óê±??ê?±?D?μ?
IIC_SCL=1;
delay_us(2);
IIC_SCL=0;
delay_us(2);
}
}
//?á1??×??ú£?ack=1ê±£?·¢?íACK£?ack=0£?·¢?ínACK
u8 IIC_Read_Byte(unsigned char ack)
{
unsigned char i,receive=0;
SDA_IN();//SDAéè???aê?è?
for(i=0;i<8;i++ )
{
IIC_SCL=0;
delay_us(2);
IIC_SCL=1;
receive<<=1;
if(READ_SDA)receive++;
delay_us(1);
}
if (!ack)
IIC_NAck();//·¢?ínACK
else
IIC_Ack(); //·¢?íACK
return receive;
}
void IIC_WriteByte(uint16_t addr,uint8_t data,uint8_t device_addr)
{
IIC_Start();
if(device_addr==0xA0) //eepromμ??·′óóú1×??ú
IIC_Send_Byte(0xA0 + ((addr/256)<<1));//·¢?í??μ??·
else
IIC_Send_Byte(device_addr); //·¢?÷?tμ??·
IIC_Wait_Ack();
IIC_Send_Byte(addr&0xFF); //·¢?íμíμ??·
IIC_Wait_Ack();
IIC_Send_Byte(data); //·¢?í×??ú
IIC_Wait_Ack();
IIC_Stop();//2úéúò???í£?1ì??t
if(device_addr==0xA0) //
delay_ms(10);
else
delay_us(2);
}
uint16_t IIC_ReadByte(uint16_t addr,uint8_t device_addr,uint8_t ByteNumToRead) //?á??′??÷?ò?áêy?Y
{
uint16_t data;
IIC_Start();
if(device_addr==0xA0)
IIC_Send_Byte(0xA0 + ((addr/256)<<1));
else
IIC_Send_Byte(device_addr);
IIC_Wait_Ack();
IIC_Send_Byte(addr&0xFF); //·¢?íμíμ??·
IIC_Wait_Ack();
IIC_Start();
IIC_Send_Byte(device_addr+1); //·¢?÷?tμ??·
IIC_Wait_Ack();
if(ByteNumToRead == 1)//LM75???èêy?Y?a11bit
{
data=IIC_Read_Byte(0);
}
else
{
data=IIC_Read_Byte(1);
data=(data<<8)+IIC_Read_Byte(0);
}
IIC_Stop();//2úéúò???í£?1ì??t
return data;
}
/**********
*é???2?·??aIO?ú?£?éI2C????
*
*′ó?aò????aê??aAHT20μ?????I2C
*oˉêy??óDIICoíI2Cμ???±e£???×¢òa£?£?£?£?£?
*
*2020/2/23×?oóDT??è??ú
*
***********/
void read_AHT20_once(void)
{
delay_ms(10);
reset_AHT20();
delay_ms(10);
init_AHT20();
delay_ms(10);
startMeasure_AHT20();
delay_ms(80);
read_AHT20();
delay_ms(5);
}
void reset_AHT20(void)
{
I2C_Start();
I2C_WriteByte(0x70);
ack_status = Receive_ACK();
if(ack_status) printf("1");
else printf("1-n-");
I2C_WriteByte(0xBA);
ack_status = Receive_ACK();
if(ack_status) printf("2");
else printf("2-n-");
I2C_Stop();
/*
AHT20_OutData[0] = 0;
AHT20_OutData[1] = 0;
AHT20_OutData[2] = 0;
AHT20_OutData[3] = 0;
*/
}
void init_AHT20(void)
{
I2C_Start();
I2C_WriteByte(0x70);
ack_status = Receive_ACK();
if(ack_status) printf("3");
else printf("3-n-");
I2C_WriteByte(0xE1);
ack_status = Receive_ACK();
if(ack_status) printf("4");
else printf("4-n-");
I2C_WriteByte(0x08);
ack_status = Receive_ACK();
if(ack_status) printf("5");
else printf("5-n-");
I2C_WriteByte(0x00);
ack_status = Receive_ACK();
if(ack_status) printf("6");
else printf("6-n-");
I2C_Stop();
}
void startMeasure_AHT20(void)
{
//------------
I2C_Start();
I2C_WriteByte(0x70);
ack_status = Receive_ACK();
if(ack_status) printf("7");
else printf("7-n-");
I2C_WriteByte(0xAC);
ack_status = Receive_ACK();
if(ack_status) printf("8");
else printf("8-n-");
I2C_WriteByte(0x33);
ack_status = Receive_ACK();
if(ack_status) printf("9");
else printf("9-n-");
I2C_WriteByte(0x00);
ack_status = Receive_ACK();
if(ack_status) printf("10");
else printf("10-n-");
I2C_Stop();
}
void read_AHT20(void)
{
uint8_t i;
for(i=0; i<6; i++)
{
readByte[i]=0;
}
//-------------
I2C_Start();
I2C_WriteByte(0x71);
ack_status = Receive_ACK();
readByte[0]= I2C_ReadByte();
Send_ACK();
readByte[1]= I2C_ReadByte();
Send_ACK();
readByte[2]= I2C_ReadByte();
Send_ACK();
readByte[3]= I2C_ReadByte();
Send_ACK();
readByte[4]= I2C_ReadByte();
Send_ACK();
readByte[5]= I2C_ReadByte();
SendNot_Ack();
//Send_ACK();
I2C_Stop();
//--------------
if( (readByte[0] & 0x68) == 0x08 )
{
H1 = readByte[1];
H1 = (H1<<8) | readByte[2];
H1 = (H1<<8) | readByte[3];
H1 = H1>>4;
H1 = (H1*1000)/1024/1024;
T1 = readByte[3];
T1 = T1 & 0x0000000F;
T1 = (T1<<8) | readByte[4];
T1 = (T1<<8) | readByte[5];
T1 = (T1*2000)/1024/1024 - 500;
AHT20_OutData[0] = (H1>>8) & 0x000000FF;
AHT20_OutData[1] = H1 & 0x000000FF;
AHT20_OutData[2] = (T1>>8) & 0x000000FF;
AHT20_OutData[3] = T1 & 0x000000FF;
}
else
{
AHT20_OutData[0] = 0xFF;
AHT20_OutData[1] = 0xFF;
AHT20_OutData[2] = 0xFF;
AHT20_OutData[3] = 0xFF;
printf("lyy");
}
printf("\r\n");
printf("温度:%d%d.%d",T1/100,(T1/10)%10,T1%10);
printf("湿度:%d%d.%d",H1/100,(H1/10)%10,H1%10);
printf("\r\n");
}
uint8_t Receive_ACK(void)
{
uint8_t result=0;
uint8_t cnt=0;
IIC_SCL = 0;
SDA_IN();
delay_us(4);
IIC_SCL = 1;
delay_us(4);
while(READ_SDA && (cnt<100))
{
cnt++;
}
IIC_SCL = 0;
delay_us(4);
if(cnt<100)
{
result=1;
}
return result;
}
void Send_ACK(void)
{
SDA_OUT();
IIC_SCL = 0;
delay_us(4);
IIC_SDA = 0;
delay_us(4);
IIC_SCL = 1;
delay_us(4);
IIC_SCL = 0;
delay_us(4);
SDA_IN();
}
void SendNot_Ack(void)
{
SDA_OUT();
IIC_SCL = 0;
delay_us(4);
IIC_SDA = 1;
delay_us(4);
IIC_SCL = 1;
delay_us(4);
IIC_SCL = 0;
delay_us(4);
IIC_SDA = 0;
delay_us(4);
}
void I2C_WriteByte(uint8_t input)
{
uint8_t i;
SDA_OUT();
for(i=0; i<8; i++)
{
IIC_SCL = 0;
delay_ms(5);
if(input & 0x80)
{
IIC_SDA = 1;
//delaymm(10);
}
else
{
IIC_SDA = 0;
//delaymm(10);
}
IIC_SCL = 1;
delay_ms(5);
input = (input<<1);
}
IIC_SCL = 0;
delay_us(4);
SDA_IN();
delay_us(4);
}
uint8_t I2C_ReadByte(void)
{
uint8_t resultByte=0;
uint8_t i=0, a=0;
IIC_SCL = 0;
SDA_IN();
delay_ms(4);
for(i=0; i<8; i++)
{
IIC_SCL = 1;
delay_ms(3);
a=0;
if(READ_SDA)
{
a=1;
}
else
{
a=0;
}
//resultByte = resultByte | a;
resultByte = (resultByte << 1) | a;
IIC_SCL = 0;
delay_ms(3);
}
SDA_IN();
delay_ms(10);
return resultByte;
}
void set_AHT20sendOutData(void)
{
/* --------------------------
* 0xFA 0x06 0x0A temperature(2 Bytes) humility(2Bytes) short Address(2 Bytes)
* And Check (1 byte)
* -------------------------*/
AHT20sendOutData[3] = AHT20_OutData[0];
AHT20sendOutData[4] = AHT20_OutData[1];
AHT20sendOutData[5] = AHT20_OutData[2];
AHT20sendOutData[6] = AHT20_OutData[3];
// AHT20sendOutData[7] = (drf1609.shortAddress >> 8) & 0x00FF;
// AHT20sendOutData[8] = drf1609.shortAddress & 0x00FF;
// AHT20sendOutData[9] = getXY(AHT20sendOutData,10);
}
void I2C_Start(void)
{
SDA_OUT();
IIC_SCL = 1;
delay_ms(4);
IIC_SDA = 1;
delay_ms(4);
IIC_SDA = 0;
delay_ms(4);
IIC_SCL = 0;
delay_ms(4);
}
void I2C_Stop(void)
{
SDA_OUT();
IIC_SDA = 0;
delay_ms(4);
IIC_SCL = 1;
delay_ms(4);
IIC_SDA = 1;
delay_ms(4);
}
2、编译并烧录
通过编译获得hex文件:
?烧录进板
?连接串口结果展示:
三、基于SPI的OLED显示?
1、SPI协议简介:
SPI定义:
SPI 协议是由摩托罗拉公司提出的通讯协议 (Serial Peripheral Interface) ,即串行外围设 备接口,是一种高速全双工的通信总线。它被广泛地使用在 ADC 、 LCD 等设备与 MCU 间, 要求通讯速率较高的场合。
SPI物理层:
SS( Slave Select):从设备选择信号线,常称为片选信号线。 SCK (Serial Clock):时钟信号线,用于通讯数据同步。 MOSI (Master Output, Slave Input):主设备输出/从设备输入引脚。 MISO(Master Input,,Slave Output):主设备输入/从设备输出引脚。
SPI协议层
SPI?基本通讯过程
MOSI 与 MISO 的信号只在 NSS 为低电平的时候才有效,在 SCK 的每个时钟周期 MOSI 和 MISO 传输一位数据。?
通讯的起始和停止信号 在图 25-2 中的标号① 处, NSS 信号线由高变低,是 SPI 通讯的起始信号。 NSS 是每个 从机各自独占的信号线,当从机在自己的 NSS 线检测到起始信号后,就知道自己被主机选 中了,开始准备与主机通讯。在图中的标号⑥ 处, NSS 信号由低变高,是 SPI 通讯的停止 信号,表示本次通讯结束,从机的选中状态被取消。 数据有效性
SPI 使用 MOSI 及 MISO 信号线来传输数据,使用 SCK 信号线进行数据同步。 MOSI 及 MISO 数据线在 SCK 的每个时钟周期传输一位数据,且数据输入输出是同时进行的。数据 传输时, MSB 先行或 LSB 先行并没有作硬性规定,但要保证两个 SPI 通讯设备之间使用同 样的协定,一般都会采用图 25-2 中的 MSB 先行模式。 CPOL/CPHA 及通讯模式
2、OLED引脚接法
?0.96寸OLED显示屏相关介绍 参考下面链接:
?0.96inch SPI OLED Module - LCD wiki
3、修改代码?
修改test.c中的TEST_MainPage函数中GUI_ShowString,GUI_ShowCHinese的参数?
?获得名字的存储代码,设置字模输出选项
?输入名字:
?再将对应的字模点阵加入到oledfont.h里
主程序:
mian.c
#include "delay.h"
#include "sys.h"
#include "oled.h"
#include "gui.h"
#include "test.h"
int main(void)
{
delay_init(); //延时函数初始化
NVIC_Configuration(); //设置NVIC中断分组2:2位抢占优先级,2位响应优先级
OLED_Init(); //初始化OLED
OLED_Clear(0); //清屏(全黑)
while(1)
{
TEST_MainPage(); //主界面显示测试
}
}
4、效果呈现
1、编译烧录进板
编译:
?烧录:
2、结果呈现?
四、 显示温度和湿度
1、主要代码
main.c
#include "delay.h"
#include "usart.h"
#include "bsp_i2c.h"
#include "sys.h"
#include "oled.h"
#include "gui.h"
#include "test.h"
int main(void)
{
delay_init(); //延时函数初始化
uart_init(115200);
IIC_Init();
NVIC_Configuration(); //设置NVIC中断分组2:2位抢占优先级,2位响应优先级
OLED_Init(); //初始化OLED
OLED_Clear(0);
while(1)
{
//printf("温度湿度显示");
read_AHT20_once();
OLED_Clear(0);
delay_ms(1500);
}
}
?2、编译烧录进板效果呈现
五、滑动显示长字符
1、代码
main.c
#include "delay.h"
#include "sys.h"
#include "oled.h"
#include "gui.h"
#include "test.h"
int main(void)
{
delay_init(); //延时函数初始化
NVIC_Configuration(); //设置NVIC中断分组2:2位抢占优先级,2位响应优先级
OLED_Init(); //初始化OLED
OLED_Clear(0); //清屏(全黑)
OLED_WR_Byte(0x2E,OLED_CMD); //关闭滚动
OLED_WR_Byte(0x27,OLED_CMD); //水平向左或者右滚动 26/27
OLED_WR_Byte(0x00,OLED_CMD); //虚拟字节
OLED_WR_Byte(0x00,OLED_CMD); //起始页 0
OLED_WR_Byte(0x07,OLED_CMD); //滚动时间间隔
OLED_WR_Byte(0x07,OLED_CMD); //终止页 7
OLED_WR_Byte(0x00,OLED_CMD); //虚拟字节
OLED_WR_Byte(0xFF,OLED_CMD); //虚拟字节
TEST_MainPage();
OLED_WR_Byte(0x2F,OLED_CMD); //开启滚动
while(1)
{
}
}
按照上面第三的步骤修改代码:
?
2、编译烧录进板
?
3、结果呈现?
?六、参考文献
?https://blog.csdn.net/qq_43279579/article/details/111597278?
基于SPI通信方式的OLED显示_不#曾&轻听的博客-CSDN博客
基于STM32的0.96寸OLED显示屏显示数据_Harriet的博客-CSDN博客_基于stm32的oled显示时间
?
|