首先阐述下遇到的问题
使用SPI读取icm20602数据,读取频率为1000hz,使用stm32f407主控,发现CPU占用率达到了70%,且扰乱了线程的时序,将此线程注释掉后CPU占用率掉到25%,线程频率恢复正常,看来这里要着重优化,便萌生了使用DMA的想法。
使用SPI+DMA要进行的配置
RTT部分
1.开启RTT设备驱动。点击自己的工程 ->RT-Thread Setting,开启SPI设备驱动 2.在board.h中添加开启宏 开启后设备驱动会自动调用HAL库进行底层硬件的初始化默认配置,并将spi注册到设备容器
int rt_hw_spi_init(void)
{
stm32_get_dma_info();
return rt_hw_spi_bus_init();
}
INIT_BOARD_EXPORT(rt_hw_spi_init);
HAL库部分
3.在board.c文件里加入以下函数,此函数受设备框架调用以进行底层硬件初始化
void HAL_SPI_MspInit(SPI_HandleTypeDef* hspi)
{
GPIO_InitTypeDef GPIO_InitStruct;
if(hspi->Instance == SPI2)
{
__HAL_RCC_SPI2_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
GPIO_InitStruct.Pin = GPIO_PIN_13| GPIO_PIN_14 | GPIO_PIN_15;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF5_SPI2;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
}
4.使能HAL库-SPI,即可与RTT设备驱动对接
至此基础配置已完毕,接下来是用户配置,配置片选,并挂载到具体的SPI设备
选择想要的io作为片选引脚,即一个设备对应一个片选
int spi_device_attach(void)
{
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
rt_pin_mode(56, PIN_MODE_OUTPUT);
rt_pin_mode(57, PIN_MODE_OUTPUT);
rt_pin_mode(58, PIN_MODE_OUTPUT);
rt_pin_mode(33, PIN_MODE_OUTPUT);
rt_pin_write(56, PIN_HIGH);
rt_pin_write(57, PIN_HIGH);
rt_pin_write(58, PIN_HIGH);
rt_pin_write(33, PIN_HIGH);
rt_hw_spi_device_attach("spi2",ICM20602_SPI_DEVICE_NAME, GPIOD, GPIO_PIN_8);
rt_hw_spi_device_attach("spi2",SPL06_SPI_DEVICE_NAME, SPL06_CS_GPIO,SPL06_CS_PIN);
rt_hw_spi_device_attach("spi2","spi22", GPIOD,GPIO_PIN_9);
rt_hw_spi_device_attach("spi2","spi23", GPIOC,GPIO_PIN_1);
return RT_EOK;
}
INIT_DEVICE_EXPORT(spi_device_attach);
初始化spi
struct rt_spi_device *spi_dev_icm20602 = RT_NULL;
int icm20602_spi_device_init(void)
{
struct rt_spi_configuration spi_cfg;
spi_dev_icm20602 = (struct rt_spi_device *)rt_device_find(ICM20602_SPI_DEVICE_NAME);
spi_cfg.data_width = 8;
spi_cfg.mode = RT_SPI_MASTER | RT_SPI_MODE_0 | RT_SPI_MSB;
spi_cfg.max_hz = 10000000;
rt_spi_configure(spi_dev_icm20602,&spi_cfg);
return RT_EOK;
}
INIT_COMPONENT_EXPORT(icm20602_spi_device_init);
配置完毕,开始使用
spi底层读写函数实现
void icm20602_reg_read(rt_uint8_t addr,rt_uint8_t *rev_buf,rt_uint32_t len)
{
struct rt_spi_message msg1,msg2;
rt_uint8_t reg = addr|0x80;
msg1.send_buf = ®
msg1.recv_buf = RT_NULL;
msg1.length = 1;
msg1.cs_take = 1;
msg1.cs_release = 0;
msg1.next = &msg2;
msg2.send_buf = RT_NULL;
msg2.recv_buf = rev_buf;
msg2.length = len;
msg2.cs_take = 0;
msg2.cs_release = 1;
msg2.next = RT_NULL;
rt_spi_transfer_message(spi_dev_icm20602, &msg1);
}
void icm20602_reg_write(rt_uint8_t addr,rt_uint8_t value)
{
struct rt_spi_message msg1;
rt_uint8_t send_buf[2];
send_buf[0] = addr;
send_buf[1] = value;
msg1.send_buf = send_buf;
msg1.recv_buf = RT_NULL;
msg1.length = 2;
msg1.cs_take = 1;
msg1.cs_release = 1;
msg1.next = RT_NULL;
rt_spi_transfer_message(spi_dev_icm20602, &msg1);
}
解决RTT的SPI设备驱动(drv_spi.c)缺陷(使用DMA)
rt_spi_transfer_message(spi_dev_icm20602, &msg1);//发送消息 (这个函数在spi_core.c后面会提到) 函数会调用这个函数进行数据传输 就是这个
static rt_uint32_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
HAL_StatusTypeDef state;
rt_size_t message_length, already_send_length;
rt_uint16_t send_length;
rt_uint8_t *recv_buf;
const rt_uint8_t *send_buf;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(device->bus != RT_NULL);
RT_ASSERT(device->bus->parent.user_data != RT_NULL);
RT_ASSERT(message != RT_NULL);
struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus);
SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
struct stm32_hw_spi_cs *cs = device->parent.user_data;
if (message->cs_take)
{
HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_RESET);
}
LOG_D("%s transfer prepare and start", spi_drv->config->bus_name);
LOG_D("%s sendbuf: %X, recvbuf: %X, length: %d",
spi_drv->config->bus_name,
(uint32_t)message->send_buf,
(uint32_t)message->recv_buf, message->length);
message_length = message->length;
recv_buf = message->recv_buf;
send_buf = message->send_buf;
while (message_length)
{
if (message_length > 65535)
{
send_length = 65535;
message_length = message_length - 65535;
}
else
{
send_length = message_length;
message_length = 0;
}
already_send_length = message->length - send_length - message_length;
send_buf = (rt_uint8_t *)message->send_buf + already_send_length;
recv_buf = (rt_uint8_t *)message->recv_buf + already_send_length;
if (message->send_buf && message->recv_buf)
{
if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG))
{
state = HAL_SPI_TransmitReceive_DMA(spi_handle, (uint8_t *)send_buf, (uint8_t *)recv_buf, send_length);
}
else
{
state = HAL_SPI_TransmitReceive(spi_handle, (uint8_t *)send_buf, (uint8_t *)recv_buf, send_length, 1000);
}
}
else if (message->send_buf)
{
if (spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG)
{
state = HAL_SPI_Transmit_DMA(spi_handle, (uint8_t *)send_buf, send_length);
}
else
{
state = HAL_SPI_Transmit(spi_handle, (uint8_t *)send_buf, send_length, 1000);
}
}
else
{
memset((uint8_t *)recv_buf, 0xff, send_length);
if (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
{
state = HAL_SPI_Receive_DMA(spi_handle, (uint8_t *)recv_buf, send_length);
}
else
{
state = HAL_SPI_Receive(spi_handle, (uint8_t *)recv_buf, send_length, 1000);
}
}
if (state != HAL_OK)
{
LOG_I("spi transfer error : %d", state);
message->length = 0;
spi_handle->State = HAL_SPI_STATE_READY;
}
else
{
LOG_D("%s transfer done", spi_drv->config->bus_name);
}
while (HAL_SPI_GetState(spi_handle) != HAL_SPI_STATE_READY);
}
if (message->cs_release)
{
HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_SET);
}
return message->length;
}
使用DMA时也是在这里死等,这就失去了我们使用DMA的初衷,现在优化这个函数,在DMA传输数据时释放CPU去干其它事
while (HAL_SPI_GetState(spi_handle) != HAL_SPI_STATE_READY);
添加如下函数,这里的方法是用信号量释放CPU
static rt_uint32_t spixfer_my(struct rt_spi_device *device, struct rt_spi_message *message, rt_sem_t sem)
{
HAL_StatusTypeDef state;
rt_size_t message_length, already_send_length;
rt_uint16_t send_length;
rt_uint8_t *recv_buf;
const rt_uint8_t *send_buf;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(device->bus != RT_NULL);
RT_ASSERT(device->bus->parent.user_data != RT_NULL);
RT_ASSERT(message != RT_NULL);
struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus);
SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
struct stm32_hw_spi_cs *cs = device->parent.user_data;
if (message->cs_take)
{
HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_RESET);
}
LOG_D("%s transfer prepare and start", spi_drv->config->bus_name);
LOG_D("%s sendbuf: %X, recvbuf: %X, length: %d",
spi_drv->config->bus_name,
(uint32_t)message->send_buf,
(uint32_t)message->recv_buf, message->length);
message_length = message->length;
recv_buf = message->recv_buf;
send_buf = message->send_buf;
while (message_length)
{
if (message_length > 65535)
{
send_length = 65535;
message_length = message_length - 65535;
}
else
{
send_length = message_length;
message_length = 0;
}
already_send_length = message->length - send_length - message_length;
send_buf = (rt_uint8_t *)message->send_buf + already_send_length;
recv_buf = (rt_uint8_t *)message->recv_buf + already_send_length;
if (message->send_buf && message->recv_buf)
{
if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG))
{
state = HAL_SPI_TransmitReceive_DMA(spi_handle, (uint8_t *)send_buf, (uint8_t *)recv_buf, send_length);
}
else
{
state = HAL_SPI_TransmitReceive(spi_handle, (uint8_t *)send_buf, (uint8_t *)recv_buf, send_length, 1000);
}
}
else if (message->send_buf)
{
if (spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG)
{
state = HAL_SPI_Transmit_DMA(spi_handle, (uint8_t *)send_buf, send_length);
}
else
{
state = HAL_SPI_Transmit(spi_handle, (uint8_t *)send_buf, send_length, 1000);
}
}
else
{
memset((uint8_t *)recv_buf, 0xff, send_length);
if (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
{
state = HAL_SPI_Receive_DMA(spi_handle, (uint8_t *)recv_buf, send_length);
}
else
{
state = HAL_SPI_Receive(spi_handle, (uint8_t *)recv_buf, send_length, 1000);
}
}
if (state != HAL_OK)
{
LOG_I("spi transfer error : %d", state);
message->length = 0;
spi_handle->State = HAL_SPI_STATE_READY;
}
else
{
LOG_D("%s transfer done", spi_drv->config->bus_name);
}
while (HAL_SPI_GetState(spi_handle) != HAL_SPI_STATE_READY)
{
rt_sem_take(sem, RT_WAITING_FOREVER);
}
}
if (message->cs_release)
{
HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_SET);
}
return message->length;
}
替换本文件里的方法结构体
static const struct rt_spi_ops stm_spi_ops =
{
.configure = spi_configure,
.xfer = spixfer,
.xfer_my = spixfer_my,
};
OK,drv_spi.c更改完成
下面更改spi.h文件
同理,替换这个结构体
struct rt_spi_ops
{
rt_err_t (*configure)(struct rt_spi_device *device, struct rt_spi_configuration *configuration);
rt_uint32_t (*xfer)(struct rt_spi_device *device, struct rt_spi_message *message);
rt_uint32_t (*xfer_my)(struct rt_spi_device *device, struct rt_spi_message *message, rt_sem_t sem);
};
OK,spi.h文件更改完成
下面更改spi_core.c文件
使这个函数支持我们自定义的函数
struct rt_spi_message *rt_spi_transfer_message(struct rt_spi_device *device,
struct rt_spi_message *message)
添加如下函数
struct rt_spi_message *rt_spi_transfer_message_my(struct rt_spi_device *device,
struct rt_spi_message *message, rt_sem_t sem)
{
rt_err_t result;
struct rt_spi_message *index;
RT_ASSERT(device != RT_NULL);
index = message;
if (index == RT_NULL)
return index;
result = rt_mutex_take(&(device->bus->lock), RT_WAITING_FOREVER);
if (result != RT_EOK)
{
rt_set_errno(-RT_EBUSY);
return index;
}
rt_set_errno(RT_EOK);
if (device->bus->owner != device)
{
result = device->bus->ops->configure(device, &device->config);
if (result == RT_EOK)
{
device->bus->owner = device;
}
else
{
rt_set_errno(-RT_EIO);
goto __exit;
}
}
while (index != RT_NULL)
{
result = device->bus->ops->xfer_my(device, index, sem);
if (result == 0)
{
rt_set_errno(-RT_EIO);
break;
}
index = index->next;
}
__exit:
rt_mutex_release(&(device->bus->lock));
return index;
}
在spi.h里新加入此函数的声明,供外部调用
struct rt_spi_message *rt_spi_transfer_message_my(struct rt_spi_device *device,
struct rt_spi_message *message, rt_sem_t sem);
OK,全部搞定
回过头来
spi底层读写函数实现 小改一下
static rt_sem_t spidma_sem = RT_NULL;
void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi)
{
rt_sem_release(spidma_sem);
}
void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi)
{
rt_sem_release(spidma_sem);
}
void icm20602_reg_read(rt_uint8_t addr,rt_uint8_t *rev_buf,rt_uint32_t len)
{
struct rt_spi_message msg1,msg2;
rt_uint8_t reg = addr|0x80;
msg1.send_buf = ®
msg1.recv_buf = RT_NULL;
msg1.length = 1;
msg1.cs_take = 1;
msg1.cs_release = 0;
msg1.next = &msg2;
msg2.send_buf = RT_NULL;
msg2.recv_buf = rev_buf;
msg2.length = len;
msg2.cs_take = 0;
msg2.cs_release = 1;
msg2.next = RT_NULL;
rt_spi_transfer_message_my(spi_dev_icm20602, &msg1, spidma_sem);
}
void icm20602_reg_write(rt_uint8_t addr,rt_uint8_t value)
{
struct rt_spi_message msg1;
rt_uint8_t send_buf[2];
send_buf[0] = addr;
send_buf[1] = value;
msg1.send_buf = send_buf;
msg1.recv_buf = RT_NULL;
msg1.length = 2;
msg1.cs_take = 1;
msg1.cs_release = 1;
msg1.next = RT_NULL;
rt_spi_transfer_message_my(spi_dev_icm20602, &msg1, spidma_sem);
}
全部完成,可以愉快的使用spi+dma干活了 CPU,DMA搭配干活不累^ _ ^
最后附上一张导图
第一次写这么长的文章,有不当之处还请批评指正~
|