IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 嵌入式 -> 蓝桥杯快速通关篇pwm方波输出 -> 正文阅读

[嵌入式]蓝桥杯快速通关篇pwm方波输出

pwm方波输出


前言

近些年来,蓝桥杯嵌入式的考察越来越注重逻辑的设计,硬件部分代码量也逐渐增多,这就对如何快速地完成外设部分的程序提出了挑战。
下面,带大家利用官方的外设参考例程来快速完成自己的代码。这篇文章讲的是常用的外设,pwm。

pwm是什么

脉宽调制(PWM)基本原理:控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等但宽度不一致的脉冲,用这些脉冲来代替正弦波或所需要的波形。也就是在输出波形的半个周期中产生多个脉冲,使各脉冲的等值电压为正弦波形,所获得的输出平滑且低次谐波少。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。想必大家都有一定的程序设计基础,这里就不过多介绍了。
简而言之,我们的目的是要快速输出占空比和频率可调的方波。


蓝桥桥杯是怎么考pwm输出的

这里给出往年的考法
请添加图片描述

请添加图片描述
请添加图片描述

具体步骤

为了快速的的完成代码,我们对官方的例程来进行修改。

官方库中的标准例程

意法半导体的标准外设库,在赛点资源包的位置
在这里插入图片描述

官方给的例程在如下路径

6-STM32固件库代码V3.5版\stm32f10x_stdperiph_lib\STM32F10x_StdPeriph_Lib_V3.5.0\Project\STM32F10x_StdPeriph_Examples

在这里插入图片描述

我们要使用的pwm输出在TIM文件夹中 如下路径
STM32F10x_StdPeriph_Lib_V3.5.0\Project\STM32F10x_StdPeriph_Examples\TIM\PWM_Output

找到main.c修改车pwm.c,然后加入到工程之中。
完整源代码如下

#include "stm32f10x.h"

/** @addtogroup STM32F10x_StdPeriph_Examples
  * @{
  */

/** @addtogroup TIM_PWM_Output
  * @{
  */ 

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
TIM_OCInitTypeDef  TIM_OCInitStructure;
uint16_t CCR1_Val = 333;
uint16_t CCR2_Val = 249;
uint16_t CCR3_Val = 166;
uint16_t CCR4_Val = 83;
uint16_t PrescalerValue = 0;

/* Private function prototypes -----------------------------------------------*/
void RCC_Configuration(void);
void GPIO_Configuration(void);

/* Private functions ---------------------------------------------------------*/

/**
  * @brief  Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /*!< At this stage the microcontroller clock setting is already configured, 
       this is done through SystemInit() function which is called from startup
       file (startup_stm32f10x_xx.s) before to branch to application main.
       To reconfigure the default setting of SystemInit() function, refer to
       system_stm32f10x.c file
     */     
       
  /* System Clocks Configuration */
  RCC_Configuration();

  /* GPIO Configuration */
  GPIO_Configuration();

  /* -----------------------------------------------------------------------
    TIM3 Configuration: generate 4 PWM signals with 4 different duty cycles:
    The TIM3CLK frequency is set to SystemCoreClock (Hz), to get TIM3 counter
    clock at 24 MHz the Prescaler is computed as following:
     - Prescaler = (TIM3CLK / TIM3 counter clock) - 1
    SystemCoreClock is set to 72 MHz for Low-density, Medium-density, High-density
    and Connectivity line devices and to 24 MHz for Low-Density Value line and
    Medium-Density Value line devices

    The TIM3 is running at 36 KHz: TIM3 Frequency = TIM3 counter clock/(ARR + 1)
                                                  = 24 MHz / 666 = 36 KHz
    TIM3 Channel1 duty cycle = (TIM3_CCR1/ TIM3_ARR)* 100 = 50%
    TIM3 Channel2 duty cycle = (TIM3_CCR2/ TIM3_ARR)* 100 = 37.5%
    TIM3 Channel3 duty cycle = (TIM3_CCR3/ TIM3_ARR)* 100 = 25%
    TIM3 Channel4 duty cycle = (TIM3_CCR4/ TIM3_ARR)* 100 = 12.5%
  ----------------------------------------------------------------------- */
  /* Compute the prescaler value */
  PrescalerValue = (uint16_t) (SystemCoreClock / 24000000) - 1;
  /* Time base configuration */
  TIM_TimeBaseStructure.TIM_Period = 665;
  TIM_TimeBaseStructure.TIM_Prescaler = PrescalerValue;
  TIM_TimeBaseStructure.TIM_ClockDivision = 0;
  TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

  TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);

  /* PWM1 Mode configuration: Channel1 */
  TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = CCR1_Val;
  TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;

  TIM_OC1Init(TIM3, &TIM_OCInitStructure);

  TIM_OC1PreloadConfig(TIM3, TIM_OCPreload_Enable);

  /* PWM1 Mode configuration: Channel2 */
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = CCR2_Val;

  TIM_OC2Init(TIM3, &TIM_OCInitStructure);

  TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Enable);

  /* PWM1 Mode configuration: Channel3 */
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = CCR3_Val;

  TIM_OC3Init(TIM3, &TIM_OCInitStructure);

  TIM_OC3PreloadConfig(TIM3, TIM_OCPreload_Enable);

  /* PWM1 Mode configuration: Channel4 */
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = CCR4_Val;

  TIM_OC4Init(TIM3, &TIM_OCInitStructure);

  TIM_OC4PreloadConfig(TIM3, TIM_OCPreload_Enable);

  TIM_ARRPreloadConfig(TIM3, ENABLE);

  /* TIM3 enable counter */
  TIM_Cmd(TIM3, ENABLE);

  while (1)
  {}
}

/**
  * @brief  Configures the different system clocks.
  * @param  None
  * @retval None
  */
void RCC_Configuration(void)
{
  /* TIM3 clock enable */
  RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);

  /* GPIOA and GPIOB clock enable */
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB |
                         RCC_APB2Periph_GPIOC | RCC_APB2Periph_AFIO, ENABLE);
}

/**
  * @brief  Configure the TIM3 Ouput Channels.
  * @param  None
  * @retval None
  */
void GPIO_Configuration(void)
{
  GPIO_InitTypeDef GPIO_InitStructure;

#ifdef STM32F10X_CL
  /*GPIOB Configuration: TIM3 channel1, 2, 3 and 4 */
  GPIO_InitStructure.GPIO_Pin =  GPIO_Pin_6 | GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

  GPIO_Init(GPIOC, &GPIO_InitStructure);

  GPIO_PinRemapConfig(GPIO_FullRemap_TIM3, ENABLE);	

#else
  /* GPIOA Configuration:TIM3 Channel1, 2, 3 and 4 as alternate function push-pull */
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

  GPIO_Init(GPIOA, &GPIO_InitStructure);

  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1;
  GPIO_Init(GPIOB, &GPIO_InitStructure);
#endif
}

#ifdef  USE_FULL_ASSERT

/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t* file, uint32_t line)
{
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */

  while (1)
  {}
}

#endif

/**
  * @}
  */ 

/**
  * @}
  */ 

/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/

代码主体由三个函数够成

RCC_Configuration();
负责初始化使用到的时钟3
GPIO_Configuration();
负责负责GPIO的初始化
int main()
负责总的pwm初始化,调用前两个函数

还有部分代码是

#ifdef  USE_FULL_ASSERT

包含起来的部分,删不删都没有影响。


#修改代码

时钟和GPIO

在官方开发板,ct117e这块板子上会用到的GPIO口有PA6PA7
分别对应TIM3的通道1和通道2
在上面代码里面,刚好会初始化到这两个口和对应的时钟,所以这一部分我们不需要改动都行。

输出频率的初始化

pwm输出频率的计算公式

freq= SystemCoreClock / ((TIM_Period+1)*(TIM_Prescaler +1))-1
eg: 假设我要PWM波的TIM3以2KHZ的频率运行(系统时钟 = 72MHZ)
且此时我们把arr = 99(即百分制),要输出频率,可以用频率做参数,代入上公式可计算出预分频的值
PrescalerValue = (uint16_t) (SystemCoreClock / 100/freq) - 1;

TIM_TimeBaseStructure.TIM_Period = 665;
 TIM_TimeBaseStructure.TIM_Prescaler = PrescalerValue;

为了能方便修改频率,我们将需要的频率作为参数输入函数中即可
将函数修改成如下代码

void pwm_init(u16 freq)
{

  /* System Clocks Configuration */
  RCC_Configuration();

  /* GPIO Configuration */
  GPIO_Configuration();


  /* Compute the prescaler value */
  PrescalerValue = (uint16_t) (SystemCoreClock / 100/freq) - 1;
  /* Time base configuration */
  TIM_TimeBaseStructure.TIM_Period =99;//此处周期和上面的100对应,100-1,
  TIM_TimeBaseStructure.TIM_Prescaler = PrescalerValue;
  TIM_TimeBaseStructure.TIM_ClockDivision = 0;
  TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

  TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);

  /* PWM1 Mode configuration: Channel1 */
  TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = CCR1_Val;
  TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;

  TIM_OC1Init(TIM3, &TIM_OCInitStructure);

  TIM_OC1PreloadConfig(TIM3, TIM_OCPreload_Enable);

  /* PWM1 Mode configuration: Channel2 */
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = CCR2_Val;

  TIM_OC2Init(TIM3, &TIM_OCInitStructure);

  TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Enable);

  /* PWM1 Mode configuration: Channel3 */
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = CCR3_Val;

  TIM_OC3Init(TIM3, &TIM_OCInitStructure);

  TIM_OC3PreloadConfig(TIM3, TIM_OCPreload_Enable);

  /* PWM1 Mode configuration: Channel4 */
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = CCR4_Val;

  TIM_OC4Init(TIM3, &TIM_OCInitStructure);

  TIM_OC4PreloadConfig(TIM3, TIM_OCPreload_Enable);

  TIM_ARRPreloadConfig(TIM3, ENABLE);

  /* TIM3 enable counter */
  TIM_Cmd(TIM3, ENABLE);
}

有两处值得注意

将频率作为参数传人函数

删除函数底部的while(1)空循环,避免程序卡在此处

不同占空比的pwm波输出

使用函数
void TIM_SetCompare1(TIM_TypeDef* TIMx, uint16_t Compare1);
这里setCompare1里的1是指通道,1就是通道1,同样的TIM_SetCompare2就是设置通道2的占空比。

在初始化程序完成后使用TIM_SetCompare1可以设置PA6的占空比,TIM_SetCompare2可以设置PA7的占空比
eg:设置PA6的占空比为60 % :TIM_SetCompare1(TIM3,60);
//前提的配置是TIM_TimeBaseStructure.TIM_Period=99;这样比较好计算占空比,即输入的参数就是占空比,输入参数为0可以视为不输出。初始化函数末尾,可使用TIM_SetCompare1(TIM3,0)使板子先不输出方波;

进一步了解周期和频率的改变方法,可以参考下这篇文章
练习STM32动态更改PWM波频率和占空比

验证程序是否工作

在考场上可以要示波器,其实也可以自己用keil的仿真来看是否输出了pwm波,仿真方法如下,同时也适用于GPIO口状态的仿真。

  1. 进入仿真,魔术棒点开,找到Debug项,勾选 Use simulator 使用仿真
    在这里插入图片描述
    然后退出来,工具栏中点开仿真 在这里插入图片描述
  2. 打开这个,逻辑分析


如图:
在这里插入图片描述

  1. 点击setup,设置要监测的GPIO口,eg:输入PORTA.6 监测PA6
    在这里插入图片描述
    输入后是这个样子
    在这里插入图片描述
  2. 右键,将模式换为bit
    在这里插入图片描述
    即可观测输出方波

总结(重要)

调用(关键部分)

将PWM_Output文件夹中的mian.c文件复制到工程中,改名成pwm.c。

将函数头 int mian()改为void pwm_init((u16 freq),同时将函数中的while(1)空循环删去。

在自己的主函数中调用pwm_init(freq),初始化频率,使用TIM_SetComparex来改变占空比。

修改后的完整代码如下

pwm.c

/**
  ******************************************************************************
  * @file    TIM/PWM_Output/main.c 
  * @author  MCD Application Team
  * @version V3.5.0
  * @date    08-April-2011
  * @brief   Main program body
  ******************************************************************************
  * @attention
  *
  * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
  * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
  * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
  * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
  * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
  * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
  *
  * <h2><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h2>
  ******************************************************************************
  */ 

/* Includes ------------------------------------------------------------------*/
#include "stm32f10x.h"

/** @addtogroup STM32F10x_StdPeriph_Examples
  * @{
  */

/** @addtogroup TIM_PWM_Output
  * @{
  */ 

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
TIM_OCInitTypeDef  TIM_OCInitStructure;
uint16_t CCR1_Val = 333;
uint16_t CCR2_Val = 249;
uint16_t CCR3_Val = 166;
uint16_t CCR4_Val = 83;
uint16_t PrescalerValue = 0;

/* Private function prototypes -----------------------------------------------*/
void RCC_Configuration(void);
void GPIO_Configuration(void);

/* Private functions ---------------------------------------------------------*/

/**
  * @brief  Main program
  * @param  None
  * @retval None
  */
void pwm_init(u16 freq)
{
  /*!< At this stage the microcontroller clock setting is already configured, 
       this is done through SystemInit() function which is called from startup
       file (startup_stm32f10x_xx.s) before to branch to application main.
       To reconfigure the default setting of SystemInit() function, refer to
       system_stm32f10x.c file
     */     
       
  /* System Clocks Configuration */
  RCC_Configuration();

  /* GPIO Configuration */
  GPIO_Configuration();

  /* -----------------------------------------------------------------------
    TIM3 Configuration: generate 4 PWM signals with 4 different duty cycles:
    The TIM3CLK frequency is set to SystemCoreClock (Hz), to get TIM3 counter
    clock at 24 MHz the Prescaler is computed as following:
     - Prescaler = (TIM3CLK / TIM3 counter clock) - 1
    SystemCoreClock is set to 72 MHz for Low-density, Medium-density, High-density
    and Connectivity line devices and to 24 MHz for Low-Density Value line and
    Medium-Density Value line devices

    The TIM3 is running at 36 KHz: TIM3 Frequency = TIM3 counter clock/(ARR + 1)
                                                  = 24 MHz / 666 = 36 KHz
    TIM3 Channel1 duty cycle = (TIM3_CCR1/ TIM3_ARR)* 100 = 50%
    TIM3 Channel2 duty cycle = (TIM3_CCR2/ TIM3_ARR)* 100 = 37.5%
    TIM3 Channel3 duty cycle = (TIM3_CCR3/ TIM3_ARR)* 100 = 25%
    TIM3 Channel4 duty cycle = (TIM3_CCR4/ TIM3_ARR)* 100 = 12.5%
  ----------------------------------------------------------------------- */
  /* Compute the prescaler value */
  PrescalerValue = (uint16_t) (SystemCoreClock / 100/freq) - 1;
  /* Time base configuration */
  TIM_TimeBaseStructure.TIM_Period = 99;
  TIM_TimeBaseStructure.TIM_Prescaler = PrescalerValue;
  TIM_TimeBaseStructure.TIM_ClockDivision = 0;
  TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

  TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);

  /* PWM1 Mode configuration: Channel1 */
  TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = CCR1_Val;
  TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;

  TIM_OC1Init(TIM3, &TIM_OCInitStructure);

  TIM_OC1PreloadConfig(TIM3, TIM_OCPreload_Enable);

  /* PWM1 Mode configuration: Channel2 */
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = CCR2_Val;

  TIM_OC2Init(TIM3, &TIM_OCInitStructure);

  TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Enable);

  /* PWM1 Mode configuration: Channel3 */
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = CCR3_Val;

  TIM_OC3Init(TIM3, &TIM_OCInitStructure);

  TIM_OC3PreloadConfig(TIM3, TIM_OCPreload_Enable);

  /* PWM1 Mode configuration: Channel4 */
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = CCR4_Val;

  TIM_OC4Init(TIM3, &TIM_OCInitStructure);

  TIM_OC4PreloadConfig(TIM3, TIM_OCPreload_Enable);

  TIM_ARRPreloadConfig(TIM3, ENABLE);

  /* TIM3 enable counter */
  TIM_Cmd(TIM3, ENABLE);

}

/**
  * @brief  Configures the different system clocks.
  * @param  None
  * @retval None
  */
void RCC_Configuration(void)
{
  /* TIM3 clock enable */
  RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);

  /* GPIOA and GPIOB clock enable */
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB |
                         RCC_APB2Periph_GPIOC | RCC_APB2Periph_AFIO, ENABLE);
}

/**
  * @brief  Configure the TIM3 Ouput Channels.
  * @param  None
  * @retval None
  */
void GPIO_Configuration(void)
{
  GPIO_InitTypeDef GPIO_InitStructure;

#ifdef STM32F10X_CL
  /*GPIOB Configuration: TIM3 channel1, 2, 3 and 4 */
  GPIO_InitStructure.GPIO_Pin =  GPIO_Pin_6 | GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

  GPIO_Init(GPIOC, &GPIO_InitStructure);

  GPIO_PinRemapConfig(GPIO_FullRemap_TIM3, ENABLE);	

#else
  /* GPIOA Configuration:TIM3 Channel1, 2, 3 and 4 as alternate function push-pull */
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

  GPIO_Init(GPIOA, &GPIO_InitStructure);

  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1;
  GPIO_Init(GPIOB, &GPIO_InitStructure);
#endif
}

#ifdef  USE_FULL_ASSERT

/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t* file, uint32_t line)
{
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */

  while (1)
  {}
}

#endif

/**
  * @}
  */ 

/**
  * @}
  */ 

/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/

函数额外初始化了别的GPIO口,要精简的可以注意下。

调用举例

main.c中初始化:
在这里插入图片描述
然后使用:
在这里插入图片描述
设置通道二的占空比。然后仿真就可以看到输出的方波了。

  嵌入式 最新文章
基于高精度单片机开发红外测温仪方案
89C51单片机与DAC0832
基于51单片机宠物自动投料喂食器控制系统仿
《痞子衡嵌入式半月刊》 第 68 期
多思计组实验实验七 简单模型机实验
CSC7720
启明智显分享| ESP32学习笔记参考--PWM(脉冲
STM32初探
STM32 总结
【STM32】CubeMX例程四---定时器中断(附工
上一篇文章      下一篇文章      查看所有文章
加:2022-01-24 11:03:47  更:2022-01-24 11:05:27 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/9 2:02:59-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码