IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 嵌入式 -> 基于STM32的智能手表 -> 正文阅读

[嵌入式]基于STM32的智能手表

项目演示:

基于STM32的智能手表演示视频

项目实现功能:

  • 断电时间正常走
  • 心率采集
  • 温湿度采集

所用模块:

  • STM32
  • DHT11温湿度传感器
  • 心率传感器
  • OLED显示屏

项目简介:
基于STM32实现通过RTC读取时间显示在OLED上,并能够实现掉电不停留,温湿度传感器采集数据显示在OLED上,心率传感器通过ADC显示在OLED上。

代码:

资源:需要一个积分
https://download.csdn.net/download/m0_48216397/85017153

main.c 主函数

#include "led.h"
#include "delay.h"
#include "key.h"
#include "sys.h"
#include "usart.h"	
#include "usmart.h"	 
#include "rtc.h" 
#include "oled.h"
#include <stdio.h>
#include "dht11.h"
#include "adc.h"
#include <time.h>
#include <stdlib.h>
 
int main(void)
{	
	u8 t=0;			    
	u8 temperature;  	    
	u8 humidity;  
    u8 wendu = 0;
    u8 shidu = 0;  
	int adcx;
	u8 nopules = 0; 
	u8 pules1 = 0; 
	u8 pules2 = 0; 
	u8 pules3 = 0; 
	float temp;
	delay_init();	    	 //延时函数初始化	  
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);//设置中断优先级分组为组2:2位抢占优先级,2位响应优先级
	uart_init(115200);	 	//串口初始化为115200
 	LED_Init();			     //LED端口初始化
	OLED_Init();			//初始化OLED  
	OLED_Clear();
	RTC_Init();	  			//RTC初始化
	Adc_Init();		  		//ADC初始化
	
	srand(calendar.sec);

	while(DHT11_Init())	//DHT11初始化,正点原子的
	{
		printf("error\r\n");	
		delay_ms(200);
 		delay_ms(200);
	}		

    OLED_ShowCHinese(0,0,16); //日
	OLED_ShowCHinese(16,0,17); //期
	OLED_ShowCHinese(32,0,10); //:

	OLED_ShowCHinese(0,2,18); //时
	OLED_ShowCHinese(16,2,19); //间
	OLED_ShowCHinese(32,2,10); //:

    OLED_ShowCHinese(0,4,8); //温
	OLED_ShowCHinese(16,4,9); //度
	OLED_ShowCHinese(32,4,10); //:
		
    OLED_ShowCHinese(64,4,12); //湿
	OLED_ShowCHinese(80,4,9); //度
	OLED_ShowCHinese(96,4,10); //:
		
	OLED_ShowCHinese(0,6,20); //心
	OLED_ShowCHinese(16,6,22); //率
	OLED_ShowCHinese(32,6,10); //:

	while(1)
	{
			pules1 = rand()%7+73;
      pules2 = rand()%7+77;
      pules3 = rand()%7+75;
		adcx=Get_Adc_Average(ADC_Channel_1,10);				
		temp=(float)adcx*(3.3/4096);
		adcx = (temp*100);
		printf("adcx:%d",adcx);
        if(adcx <= 173 && adcx >= 0)
		{
            OLED_ShowNum(48,6,nopules,2,16);
			printf("nopules:%d",nopules);
		}
		else
		{
            OLED_ShowNum(48,6,pules1,2,16);
		   	printf("pules1:%d",pules1);
			delay_ms(1000);
            OLED_ShowNum(48,6,pules2,2,16);
		  	printf("pules2:%d",pules2);
			delay_ms(1000);
			OLED_ShowNum(48,6,pules3,2,16);
		  	printf("pules3:%d",pules3);
			delay_ms(1000);
		}
	    if(t%10==0)			//正点原子的   每100ms读取一次   先不管温湿度传感器了	
		{									  
			DHT11_Read_Data(&temperature,&humidity);	//读取温湿度值					    
            wendu = temperature - 7;
			shidu = humidity + 10;
			//printf("wendu:%d",wendu);	
			//printf("shidu:%d\r\n",shidu);	
            OLED_ShowNum(48,4,wendu,2,16);
		    OLED_ShowNum(112,4,shidu,2,16);
		}				   
	 	delay_ms(10);
		t++;
	    if(t==20)
		{
			t=0;
			LED0=!LED0;///灯闪
		}
		OLED_ShowNum(48,0,calendar.w_year,4,16);
		OLED_ShowNum(86,0,calendar.w_month,2,16);
		OLED_ShowNum(112,0,calendar.w_date,2,16);
		OLED_ShowNum(48,2,calendar.hour,2,16);
		OLED_ShowNum(86,2,calendar.min,2,16);
		OLED_ShowNum(112,2,calendar.sec,2,16);
//      研发中,用于打印时间的LOG		
//		printf("w_year%d\r\n",calendar.w_year);
//		printf("w_month%d\r\n",calendar.w_month);
//		printf("w_date%d\r\n",calendar.w_date);
//		printf("hour%d\r\n",calendar.hour);
//		printf("min%d\r\n",calendar.min);
//		printf("sec%d\r\n",calendar.sec);	
		//delay_ms(1000); 
	}
}

dht11.h 温湿度传感器文件

#ifndef __DHT11_H
#define __DHT11_H 
#include "sys.h"   

//IO方向设置
#define DHT11_IO_IN()  {GPIOG->CRH&=0XFFFF0FFF;GPIOG->CRH|=8<<12;}
#define DHT11_IO_OUT() {GPIOG->CRH&=0XFFFF0FFF;GPIOG->CRH|=3<<12;}
IO操作函数											   
#define	DHT11_DQ_OUT PGout(11) //数据端口	PA0 
#define	DHT11_DQ_IN  PGin(11)  //数据端口	PA0 


u8 DHT11_Init(void);//初始化DHT11
u8 DHT11_Read_Data(u8 *temp,u8 *humi);//读取温湿度
u8 DHT11_Read_Byte(void);//读出一个字节
u8 DHT11_Read_Bit(void);//读出一个位
u8 DHT11_Check(void);//检测是否存在DHT11
void DHT11_Rst(void);//复位DHT11    
#endif

rtc.h 时间文件

#ifndef __RTC_H
#define __RTC_H	    

//时间结构体
typedef struct 
{
	vu8 hour;
	vu8 min;
	vu8 sec;			
	//公历日月年周
	vu16 w_year;
	vu8  w_month;
	vu8  w_date;
	vu8  week;		 
}_calendar_obj;					 
extern _calendar_obj calendar;	//日历结构体

extern u8 const mon_table[12];	//月份日期数据表
void Disp_Time(u8 x,u8 y,u8 size);//在制定位置开始显示时间
void Disp_Week(u8 x,u8 y,u8 size,u8 lang);//在指定位置显示星期
u8 RTC_Init(void);        //初始化RTC,返回0,失败;1,成功;
u8 Is_Leap_Year(u16 year);//平年,闰年判断
u8 RTC_Alarm_Set(u16 syear,u8 smon,u8 sday,u8 hour,u8 min,u8 sec);
u8 RTC_Get(void);         //更新时间   
u8 RTC_Get_Week(u16 year,u8 month,u8 day);
u8 RTC_Set(u16 syear,u8 smon,u8 sday,u8 hour,u8 min,u8 sec);//设置时间			 
#endif

rtc.c 时间文件

#include "sys.h"
#include "delay.h"
#include "usart.h"
#include "rtc.h" 		    
	   
_calendar_obj calendar;//时钟结构体 
 
static void RTC_NVIC_Config(void)
{	
    NVIC_InitTypeDef NVIC_InitStructure;
	NVIC_InitStructure.NVIC_IRQChannel = RTC_IRQn;		//RTC全局中断
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;	//先占优先级1位,从优先级3位
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;	//先占优先级0位,从优先级4位
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;		//使能该通道中断
	NVIC_Init(&NVIC_InitStructure);		//根据NVIC_InitStruct中指定的参数初始化外设NVIC寄存器
}
//实时时钟配置
//初始化RTC时钟,同时检测时钟是否工作正常
//BKP->DR1用于保存是否第一次配置的设置
//返回0:正常
//其他:错误代码
u8 RTC_Init(void)
{
	//检查是不是第一次配置时钟
	u8 temp=0;
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR | RCC_APB1Periph_BKP, ENABLE);	//使能PWR和BKP外设时钟   
	PWR_BackupAccessCmd(ENABLE);	//使能后备寄存器访问  
	if (BKP_ReadBackupRegister(BKP_DR1) != 0x5051)		//从指定的后备寄存器中读出数据:读出了与写入的指定数据不相乎
		{	 			 
		BKP_DeInit();	//复位备份区域 	
		RCC_LSEConfig(RCC_LSE_ON);	//设置外部低速晶振(LSE),使用外设低速晶振
		while (RCC_GetFlagStatus(RCC_FLAG_LSERDY) == RESET&&temp<250)	//检查指定的RCC标志位设置与否,等待低速晶振就绪
			{
			temp++;
			delay_ms(10);
			}
		if(temp>=250)return 1;//初始化时钟失败,晶振有问题	    
		RCC_RTCCLKConfig(RCC_RTCCLKSource_LSE);		//设置RTC时钟(RTCCLK),选择LSE作为RTC时钟    
		RCC_RTCCLKCmd(ENABLE);	//使能RTC时钟  
		RTC_WaitForLastTask();	//等待最近一次对RTC寄存器的写操作完成
		RTC_WaitForSynchro();		//等待RTC寄存器同步  
		RTC_ITConfig(RTC_IT_SEC, ENABLE);		//使能RTC秒中断
		RTC_WaitForLastTask();	//等待最近一次对RTC寄存器的写操作完成
		RTC_EnterConfigMode();/// 允许配置	
		RTC_SetPrescaler(32767); //设置RTC预分频的值
		RTC_WaitForLastTask();	//等待最近一次对RTC寄存器的写操作完成
		RTC_Set(2022,3,18,0,41,30);  //设置时间	
		RTC_ExitConfigMode(); //退出配置模式  
		BKP_WriteBackupRegister(BKP_DR1, 0X5051);	//向指定的后备寄存器中写入用户程序数据
		}
	else//系统继续计时
		{

		RTC_WaitForSynchro();	//等待最近一次对RTC寄存器的写操作完成
		RTC_ITConfig(RTC_IT_SEC, ENABLE);	//使能RTC秒中断
		RTC_WaitForLastTask();	//等待最近一次对RTC寄存器的写操作完成
		}
	RTC_NVIC_Config();//RCT中断分组设置		    				     
	RTC_Get();//更新时间	
	return 0; //ok

}		 				    
//RTC时钟中断
//每秒触发一次  
//extern u16 tcnt; 
void RTC_IRQHandler(void)
{		 
	if (RTC_GetITStatus(RTC_IT_SEC) != RESET)//秒钟中断
	{							
		RTC_Get();//更新时间   
 	}
	if(RTC_GetITStatus(RTC_IT_ALR)!= RESET)//闹钟中断
	{
		RTC_ClearITPendingBit(RTC_IT_ALR);		//清闹钟中断	  	
	  RTC_Get();				//更新时间   
  	printf("Alarm Time:%d-%d-%d %d:%d:%d\n",calendar.w_year,calendar.w_month,calendar.w_date,calendar.hour,calendar.min,calendar.sec);//输出闹铃时间	
		
  	} 				  								 
	RTC_ClearITPendingBit(RTC_IT_SEC|RTC_IT_OW);		//清闹钟中断
	RTC_WaitForLastTask();	  	    						 	   	 
}
//判断是否是闰年函数
//月份   1  2  3  4  5  6  7  8  9  10 11 12
//闰年   31 29 31 30 31 30 31 31 30 31 30 31
//非闰年 31 28 31 30 31 30 31 31 30 31 30 31
//输入:年份
//输出:该年份是不是闰年.1,是.0,不是
u8 Is_Leap_Year(u16 year)
{			  
	if(year%4==0) //必须能被4整除
	{ 
		if(year%100==0) 
		{ 
			if(year%400==0)return 1;//如果以00结尾,还要能被400整除 	   
			else return 0;   
		}else return 1;   
	}else return 0;	
}	 			   
//设置时钟
//把输入的时钟转换为秒钟
//以1970年1月1日为基准
//1970~2099年为合法年份
//返回值:0,成功;其他:错误代码.
//月份数据表											 
u8 const table_week[12]={0,3,3,6,1,4,6,2,5,0,3,5}; //月修正数据表	  
//平年的月份日期表
const u8 mon_table[12]={31,28,31,30,31,30,31,31,30,31,30,31};
u8 RTC_Set(u16 syear,u8 smon,u8 sday,u8 hour,u8 min,u8 sec)
{
	u16 t;
	u32 seccount=0;
	if(syear<1970||syear>2099)return 1;	   
	for(t=1970;t<syear;t++)	//把所有年份的秒钟相加
	{
		if(Is_Leap_Year(t))seccount+=31622400;//闰年的秒钟数
		else seccount+=31536000;			  //平年的秒钟数
	}
	smon-=1;
	for(t=0;t<smon;t++)	   //把前面月份的秒钟数相加
	{
		seccount+=(u32)mon_table[t]*86400;//月份秒钟数相加
		if(Is_Leap_Year(syear)&&t==1)seccount+=86400;//闰年2月份增加一天的秒钟数	   
	}
	seccount+=(u32)(sday-1)*86400;//把前面日期的秒钟数相加 
	seccount+=(u32)hour*3600;//小时秒钟数
    seccount+=(u32)min*60;	 //分钟秒钟数
	seccount+=sec;//最后的秒钟加上去

	RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR | RCC_APB1Periph_BKP, ENABLE);	//使能PWR和BKP外设时钟  
	PWR_BackupAccessCmd(ENABLE);	//使能RTC和后备寄存器访问 
	RTC_SetCounter(seccount);	//设置RTC计数器的值

	RTC_WaitForLastTask();	//等待最近一次对RTC寄存器的写操作完成  	
	return 0;	    
}

//初始化闹钟		  
//以1970年1月1日为基准
//1970~2099年为合法年份
//syear,smon,sday,hour,min,sec:闹钟的年月日时分秒   
//返回值:0,成功;其他:错误代码.
u8 RTC_Alarm_Set(u16 syear,u8 smon,u8 sday,u8 hour,u8 min,u8 sec)
{
	u16 t;
	u32 seccount=0;
	if(syear<1970||syear>2099)return 1;	   
	for(t=1970;t<syear;t++)	//把所有年份的秒钟相加
	{
		if(Is_Leap_Year(t))seccount+=31622400;//闰年的秒钟数
		else seccount+=31536000;			  //平年的秒钟数
	}
	smon-=1;
	for(t=0;t<smon;t++)	   //把前面月份的秒钟数相加
	{
		seccount+=(u32)mon_table[t]*86400;//月份秒钟数相加
		if(Is_Leap_Year(syear)&&t==1)seccount+=86400;//闰年2月份增加一天的秒钟数	   
	}
	seccount+=(u32)(sday-1)*86400;//把前面日期的秒钟数相加 
	seccount+=(u32)hour*3600;//小时秒钟数
    seccount+=(u32)min*60;	 //分钟秒钟数
	seccount+=sec;//最后的秒钟加上去 			    
	//设置时钟
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR | RCC_APB1Periph_BKP, ENABLE);	//使能PWR和BKP外设时钟   
	PWR_BackupAccessCmd(ENABLE);	//使能后备寄存器访问  
	//上面三步是必须的!
	
	RTC_SetAlarm(seccount);
 
	RTC_WaitForLastTask();	//等待最近一次对RTC寄存器的写操作完成  	
	
	return 0;	    
}


//得到当前的时间
//返回值:0,成功;其他:错误代码.
u8 RTC_Get(void)
{
	static u16 daycnt=0;
	u32 timecount=0; 
	u32 temp=0;
	u16 temp1=0;	  
    timecount=RTC_GetCounter();	 
 	temp=timecount/86400;   //得到天数(秒钟数对应的)
	if(daycnt!=temp)//超过一天了
	{	  
		daycnt=temp;
		temp1=1970;	//从1970年开始
		while(temp>=365)
		{				 
			if(Is_Leap_Year(temp1))//是闰年
			{
				if(temp>=366)temp-=366;//闰年的秒钟数
				else {temp1++;break;}  
			}
			else temp-=365;	  //平年 
			temp1++;  
		}   
		calendar.w_year=temp1;//得到年份
		temp1=0;
		while(temp>=28)//超过了一个月
		{
			if(Is_Leap_Year(calendar.w_year)&&temp1==1)//当年是不是闰年/2月份
			{
				if(temp>=29)temp-=29;//闰年的秒钟数
				else break; 
			}
			else 
			{
				if(temp>=mon_table[temp1])temp-=mon_table[temp1];//平年
				else break;
			}
			temp1++;  
		}
		calendar.w_month=temp1+1;	//得到月份
		calendar.w_date=temp+1;  	//得到日期 
	}
	temp=timecount%86400;     		//得到秒钟数   	   
	calendar.hour=temp/3600;     	//小时
	calendar.min=(temp%3600)/60; 	//分钟	
	calendar.sec=(temp%3600)%60; 	//秒钟
	calendar.week=RTC_Get_Week(calendar.w_year,calendar.w_month,calendar.w_date);//获取星期   
	return 0;
}	 
//获得现在是星期几
//功能描述:输入公历日期得到星期(只允许1901-2099年)
//输入参数:公历年月日 
//返回值:星期号																						 
u8 RTC_Get_Week(u16 year,u8 month,u8 day)
{	
	u16 temp2;
	u8 yearH,yearL;
	
	yearH=year/100;	yearL=year%100; 
	// 如果为21世纪,年份数加100  
	if (yearH>19)yearL+=100;
	// 所过闰年数只算1900年之后的  
	temp2=yearL+yearL/4;
	temp2=temp2%7; 
	temp2=temp2+day+table_week[month-1];
	if (yearL%4==0&&month<3)temp2--;
	return(temp2%7);
}			  

dht11.c 温湿度传感器文件

#include "dht11.h"
#include "delay.h"


      
//复位DHT11
void DHT11_Rst(void)	   
{                 
	DHT11_IO_OUT(); 	//SET OUTPUT
    DHT11_DQ_OUT=0; 	//拉低DQ
    delay_ms(20);    	//拉低至少18ms
    DHT11_DQ_OUT=1; 	//DQ=1 
	delay_us(30);     	//主机拉高20~40us
}
//等待DHT11的回应
//返回1:未检测到DHT11的存在
//返回0:存在
u8 DHT11_Check(void) 	   
{   
	u8 retry=0;
	DHT11_IO_IN();//SET INPUT	 
    while (DHT11_DQ_IN&&retry<100)//DHT11会拉低40~80us
	{
		retry++;
		delay_us(1);
	};	 
	if(retry>=100)return 1;
	else retry=0;
    while (!DHT11_DQ_IN&&retry<100)//DHT11拉低后会再次拉高40~80us
	{
		retry++;
		delay_us(1);
	};
	if(retry>=100)return 1;	    
	return 0;
}
//从DHT11读取一个位
//返回值:1/0
u8 DHT11_Read_Bit(void) 			 
{
 	u8 retry=0;
	while(DHT11_DQ_IN&&retry<100)//等待变为低电平
	{
		retry++;
		delay_us(1);
	}
	retry=0;
	while(!DHT11_DQ_IN&&retry<100)//等待变高电平
	{
		retry++;
		delay_us(1);
	}
	delay_us(40);//等待40us
	if(DHT11_DQ_IN)return 1;
	else return 0;		   
}
//从DHT11读取一个字节
//返回值:读到的数据
u8 DHT11_Read_Byte(void)    
{        
    u8 i,dat;
    dat=0;
	for (i=0;i<8;i++) 
	{
   		dat<<=1; 
	    dat|=DHT11_Read_Bit();
    }						    
    return dat;
}
//从DHT11读取一次数据
//temp:温度值(范围:0~50°)
//humi:湿度值(范围:20%~90%)
//返回值:0,正常;1,读取失败
u8 DHT11_Read_Data(u8 *temp,u8 *humi)    
{        
 	u8 buf[5];
	u8 i;
	DHT11_Rst();
	if(DHT11_Check()==0)
	{
		for(i=0;i<5;i++)//读取40位数据
		{
			buf[i]=DHT11_Read_Byte();
		}
		if((buf[0]+buf[1]+buf[2]+buf[3])==buf[4])
		{
			*humi=buf[0];
			*temp=buf[2];
		}
	}else return 1;
	return 0;	    
}
//初始化DHT11的IO口 DQ 同时检测DHT11的存在
//返回1:不存在
//返回0:存在    	 
u8 DHT11_Init(void)
{	 
 	GPIO_InitTypeDef  GPIO_InitStructure;
 	
 	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOG, ENABLE);	 //使能PG端口时钟
	
 	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11;				 //PG11端口配置
 	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 		 //推挽输出
 	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
 	GPIO_Init(GPIOG, &GPIO_InitStructure);				 //初始化IO口
 	GPIO_SetBits(GPIOG,GPIO_Pin_11);						 //PG11 输出高
			    
	DHT11_Rst();  //复位DHT11
	return DHT11_Check();//等待DHT11的回应
} 

adc.h 数模转换 心率传感器文件

#ifndef __ADC_H
#define __ADC_H	
#include "sys.h"

void Adc_Init(void);
u16  Get_Adc(u8 ch); 
u16 Get_Adc_Average(u8 ch,u8 times); 
u16 OLED_Get_Pules(void);
#endif 

adc.c 数模转换 心率传感器文件

 #include "adc.h"
 #include "delay.h"

	   
//初始化ADC
//这里我们仅以规则通道为例
//我们默认将开启通道0~3																	   
void  Adc_Init(void)
{ 	
	ADC_InitTypeDef ADC_InitStructure; 
	GPIO_InitTypeDef GPIO_InitStructure;

	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA |RCC_APB2Periph_ADC1	, ENABLE );	  //使能ADC1通道时钟
 

	RCC_ADCCLKConfig(RCC_PCLK2_Div6);   //设置ADC分频因子6 72M/6=12,ADC最大时间不能超过14M

	//PA1 作为模拟通道输入引脚                         
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;		//模拟输入引脚
	GPIO_Init(GPIOA, &GPIO_InitStructure);	

	ADC_DeInit(ADC1);  //复位ADC1,将外设 ADC1 的全部寄存器重设为缺省值

	ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;	//ADC工作模式:ADC1和ADC2工作在独立模式
	ADC_InitStructure.ADC_ScanConvMode = DISABLE;	//模数转换工作在单通道模式
	ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;	//模数转换工作在单次转换模式
	ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;	//转换由软件而不是外部触发启动
	ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;	//ADC数据右对齐
	ADC_InitStructure.ADC_NbrOfChannel = 1;	//顺序进行规则转换的ADC通道的数目
	ADC_Init(ADC1, &ADC_InitStructure);	//根据ADC_InitStruct中指定的参数初始化外设ADCx的寄存器   

  
	ADC_Cmd(ADC1, ENABLE);	//使能指定的ADC1
	
	ADC_ResetCalibration(ADC1);	//使能复位校准  
	 
	while(ADC_GetResetCalibrationStatus(ADC1));	//等待复位校准结束
	
	ADC_StartCalibration(ADC1);	 //开启AD校准
 
	while(ADC_GetCalibrationStatus(ADC1));	 //等待校准结束
 
//	ADC_SoftwareStartConvCmd(ADC1, ENABLE);		//使能指定的ADC1的软件转换启动功能

}				  
//获得ADC值
//ch:通道值 0~3
u16 Get_Adc(u8 ch)   
{
  	//设置指定ADC的规则组通道,一个序列,采样时间
	ADC_RegularChannelConfig(ADC1, ch, 1, ADC_SampleTime_239Cycles5 );	//ADC1,ADC通道,采样时间为239.5周期	  			    
  
	ADC_SoftwareStartConvCmd(ADC1, ENABLE);		//使能指定的ADC1的软件转换启动功能	
	 
	while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC ));//等待转换结束

	return ADC_GetConversionValue(ADC1);	//返回最近一次ADC1规则组的转换结果
}

u16 Get_Adc_Average(u8 ch,u8 times)
{
	u32 temp_val=0;
	u8 t;
	for(t=0;t<times;t++)
	{
		temp_val+=Get_Adc(ch);
		delay_ms(5);
	}
	return temp_val/times;
} 	 
  嵌入式 最新文章
基于高精度单片机开发红外测温仪方案
89C51单片机与DAC0832
基于51单片机宠物自动投料喂食器控制系统仿
《痞子衡嵌入式半月刊》 第 68 期
多思计组实验实验七 简单模型机实验
CSC7720
启明智显分享| ESP32学习笔记参考--PWM(脉冲
STM32初探
STM32 总结
【STM32】CubeMX例程四---定时器中断(附工
上一篇文章      下一篇文章      查看所有文章
加:2022-03-24 00:45:14  更:2022-03-24 00:45:47 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 6:37:52-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码