| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 嵌入式 -> MOS管米勒效应 -> 正文阅读 |
|
[嵌入式]MOS管米勒效应 |
如下是一个NMOS的开关电路,阶跃信号VG1设置DC电平2V,方波(振幅2V,频率50Hz),T2的开启电压2V,所以MOS管T2会以周期T=20ms进行开启和截止状态的切换。 首先仿真Vgs和Vds的波形,会看到Vgs=2V的时候有一个小平台,有人会好奇为什么Vgs在上升时会有一个小平台? MOS管Vgs小平台 带着这个疑问,我们尝试将电阻R1由5K改为1K,再次仿真,发现这个平台变得很小,几乎没有了,这又是为什么呢?
MOS管Vgs小平台有改善 为了理解这种现象,需要理论知识的支撑。 MOS管的等效模型 我们通常看到的MOS管图形是左边这种,右边的称为MOS管的等效模型。 其中:Cgs称为GS寄生电容,Cgd称为GD寄生电容,输入电容Ciss=Cgs+Cgd,输出电容Coss=Cgd+Cds,反向传输电容Crss=Cgd,也叫米勒电容。 如果你不了解MOS管输入输出电容概念,请点击:带你读懂MOS管参数「热阻、输入输出电容及开关时间」 米勒效应的罪魁祸首就是米勒电容,米勒效应指其输入输出之间的分布电容Cgd在反相放大的作用下,使得等效输入电容值放大的效应,米勒效应会形成米勒平台。 首先我们需要知道的一个点是:因为MOS管制造工艺,必定产生Cgd,也就是米勒电容必定存在,所以米勒效应不可避免。 那米勒效应的缺点是什么呢? MOS管的开启是一个从无到有的过程,MOS管D极和S极重叠时间越长,MOS管的导通损耗越大。因为有了米勒电容,有了米勒平台,MOS管的开启时间变长,MOS管的导通损耗必定会增大。 仿真时我们将G极电阻R1变小之后,发现米勒平台有改善?原因我们应该都知道了。 MOS管的开启可以看做是输入电压通过栅极电阻R1对寄生电容Cgs的充电过程,R1越小,Cgs充电越快,MOS管开启就越快,这是减小栅极电阻,米勒平台有改善的原因。 那在米勒平台究竟发生了一些什么? 以NMOS管来说,在MOS管开启之前,D极电压是大于G极电压的,随着输入电压的增大,Vgs在增大,Cgd存储的电荷同时需要和输入电压进行中和,因为MOS管完全导通时,G极电压是大于D极电压的。 所以在米勒平台,是Cgd充电的过程,这时候Vgs变化则很小,当Cgd和Cgs处在同等水平时,Vgs才开始继续上升。 我们以下右图来分析米勒效应,?这个电路图是一个什么情况? MOS管D极负载是电感加续流二极管,工作模式和DC-DC BUCK一样,MOS管导通时,VDD对电感L进行充电,因为MOS管导通时间极短,可以近似电感为一个恒流源,在MOS管关闭时,续流二极管给电感L提供一个泄放路径,形成续流。 MOS管的开启可以分为4个阶段。 t0~t1阶段 从t0开始,G极给电容Cgs充电,Vgs从0V上升到Vgs(th)时,MOS管都处于截止状态,Vds保持不变,Id为零。 t1~t2阶段 从t1后,Vgs大于MOS管开启电压Vgs(th),MOS管开始导通,Id电流上升,此时的等效电路图如下所示,在IDS电流没有达到电感电流时,一部分电流会流过二极管,二极管DF仍是导通状态,二极管的两端处于一个钳位状态,这个时候Vds电压几乎不变,只有一个很小的下降(杂散电感的影响)。 t1~t2阶段等效电路 t2~t3阶段 随着Vgs电压的上升,IDS电流和电感电流一样时,MOS管D极电压不再被二极管DF钳位,DF处于反向截止状态,所以Vds开始下降,这时候G极的驱动电流转移给Cgd充电,?Vgs出现了米勒平台,Vgs电压维持不变,Vds逐渐下降至导通压降VF。 t2~t3阶段等效电路 t3~t4阶段 当米勒电容Cgd充满电时,Vgs电压继续上升,直至MOS管完全导通。 结合MOS管输出曲线,总结一下MOS管的导通过程 t0~t1,MOS管处于截止区;t1后,Vgs超过MOS管开启电压,随着Vgs的增大,ID增大,当ID上升到和电感电流一样时,续流二极管反向截止,t2~t3时间段,Vgs进入米勒平台期,这个时候D极电压不再被续流二极管钳位,MOS的夹断区变小,t3后进入线性电阻区,Vgs则继续上升,Vds逐渐减小,直至MOS管完全导通。
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? MOS管输出曲线 米勒效应的影响 1.当使用MOS管进行高频切换时候,米勒效应会影响高频信号的质量,如信号的上升时间,下降时间以及电平保持时间等,这个时候由于米勒效应的加入,会导致输出信号和经过mos管后的信号上述参数出现变化。 ????????我们分析如下电路:当输入信号Vgs逐渐增大,MOS导通,输出Vds下降。在正常的低频电路中,此种设计对外界的对应的电阻等要求不高,假设设计需求有几十KHZ的信号,甚至对信号的质量有明确的要求,此时米勒效应就需要考虑进去,此时整个链路的寄生参数甚至电阻的大小既要保证设计的需求还需保持电路的稳定性,当R1减少,确实能减少米勒效应的影响,但是同时需考虑,如果VG1为外接信号源,那R1就有了防护作用,所以这种需要取得平衡。 ? ? ? ? 输出多端Vds的信号不仅取决于栅极的输出控制信号质量,还取决于输出端负载的各种参数,当输出端负载电容和负载电阻过大时候,也会产生类似于输出信号上升下降缓慢的问题。 |
|
嵌入式 最新文章 |
基于高精度单片机开发红外测温仪方案 |
89C51单片机与DAC0832 |
基于51单片机宠物自动投料喂食器控制系统仿 |
《痞子衡嵌入式半月刊》 第 68 期 |
多思计组实验实验七 简单模型机实验 |
CSC7720 |
启明智显分享| ESP32学习笔记参考--PWM(脉冲 |
STM32初探 |
STM32 总结 |
【STM32】CubeMX例程四---定时器中断(附工 |
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 | -2024/12/28 17:06:55- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |
数据统计 |