IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 开发工具 -> Flink笔记-window窗口 -> 正文阅读

[开发工具]Flink笔记-window窗口

一、不分组窗口函数

public class WindowStream {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(3);
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

        FlinkKafkaConsumer010<String> consumer = new FlinkKafkaConsumer010<>("dwd", new SimpleStringSchema(), KafkaUtils.comsumerProps());
        DataStreamSource<String> sourceStream = env.addSource(consumer);
        SingleOutputStreamOperator<String> sourceWithWatermarkStream = sourceStream.assignTimestampsAndWatermarks(new EventTimeExtractor());

        SingleOutputStreamOperator<Tuple2<String, Integer>> vodStream = sourceWithWatermarkStream.map(new MapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public Tuple2<String, Integer> map(String line) throws Exception {
                JSONObject jn = JSON.parseObject(line);
                return new Tuple2<String, Integer>(jn.getString("userid"), Integer.parseInt(jn.getString("seconds")));
            }
        });

        // 全局窗口
        // 滚动时间窗口
        vodStream
                .timeWindowAll(Time.seconds(5))
                .sum(1)
                .print();

        // 滑动时间窗口
        vodStream
                .timeWindowAll(Time.seconds(5), Time.seconds(3))
                .sum(1)
                .print();

        // 滚动计数窗口
        vodStream
                .countWindowAll(100)
                .sum(1)
                .print();

        // 滑动计数窗口
        vodStream
                .countWindowAll(100, 80)
                .sum(1)
                .print();

        env.execute();
    }
}

二、分组窗口函数

public class WindowStream {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(3);
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

        FlinkKafkaConsumer010<String> consumer = new FlinkKafkaConsumer010<>("dwd", new SimpleStringSchema(), KafkaUtils.comsumerProps());
        DataStreamSource<String> sourceStream = env.addSource(consumer);
        SingleOutputStreamOperator<String> sourceWithWatermarkStream = sourceStream.assignTimestampsAndWatermarks(new EventTimeExtractor());

        SingleOutputStreamOperator<Tuple2<String, Integer>> vodStream = sourceWithWatermarkStream.map(new MapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public Tuple2<String, Integer> map(String line) throws Exception {
                JSONObject jn = JSON.parseObject(line);
                return new Tuple2<String, Integer>(jn.getString("userid"), Integer.parseInt(jn.getString("seconds")));
            }
        });

        // 分组窗口
        // 滚动时间窗口
        vodStream
                .keyBy(0)
                .timeWindow(Time.seconds(5))
                .sum(1)
                .print();

        // 滑动时间窗口
        vodStream
                .keyBy(0)
                .timeWindow(Time.seconds(5), Time.seconds(3))
                .sum(1)
                .print();

        // 滚动计数窗口
        vodStream
                .keyBy(0)
                .countWindow(100)
                .sum(1)
                .print();

        // 滑动计数窗口
        vodStream
                .keyBy(0)
                .countWindow(100, 80)
                .sum(1)
                .print();

        env.execute();
    }
}

三、窗口函数的聚合

1、普通聚合函数

????????例:sum、max

public class WindowStream {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(3);
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

        FlinkKafkaConsumer010<String> consumer = new FlinkKafkaConsumer010<>("dwd", new SimpleStringSchema(), KafkaUtils.comsumerProps());
        DataStreamSource<String> sourceStream = env.addSource(consumer);
        SingleOutputStreamOperator<String> sourceWithWatermarkStream = sourceStream.assignTimestampsAndWatermarks(new EventTimeExtractor());

        SingleOutputStreamOperator<Tuple2<String, Integer>> vodStream = sourceWithWatermarkStream.map(new MapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public Tuple2<String, Integer> map(String line) throws Exception {
                JSONObject jn = JSON.parseObject(line);
                return new Tuple2<String, Integer>(jn.getString("userid"), Integer.parseInt(jn.getString("seconds")));
            }
        });

        // 全局窗口
        // 滚动时间窗口
        vodStream
                .timeWindowAll(Time.seconds(5))
                .sum(1)
                .print();
                
        env.execute();

    }
}

?

2、reduce

????????ReduceFunction

public class WindowStream {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(3);
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

        FlinkKafkaConsumer010<String> consumer = new FlinkKafkaConsumer010<>("dwd", new SimpleStringSchema(), KafkaUtils.comsumerProps());
        DataStreamSource<String> sourceStream = env.addSource(consumer);
        SingleOutputStreamOperator<String> sourceWithWatermarkStream = sourceStream.assignTimestampsAndWatermarks(new EventTimeExtractor());

        SingleOutputStreamOperator<Tuple2<String, Integer>> vodStream = sourceWithWatermarkStream.map(new MapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public Tuple2<String, Integer> map(String line) throws Exception {
                JSONObject jn = JSON.parseObject(line);
                return new Tuple2<String, Integer>(jn.getString("userid"), Integer.parseInt(jn.getString("seconds")));
            }
        });

        // reduce -> ReduceFunction
        vodStream
                .timeWindowAll(Time.seconds(5))
                .reduce(new ReduceFunction<Tuple2<String, Integer>>() {
                    @Override
                    public Tuple2<String, Integer> reduce(Tuple2<String, Integer> t1, Tuple2<String, Integer> t2) throws Exception {
                        return new Tuple2<>("user", t1.f1 + t2.f1);
                    }
                })
                .print();

        env.execute();
    }
}

?

3、aggregate

public class WindowStream {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(3);
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

        FlinkKafkaConsumer010<String> consumer = new FlinkKafkaConsumer010<>("dwd", new SimpleStringSchema(), KafkaUtils.comsumerProps());
        DataStreamSource<String> sourceStream = env.addSource(consumer);
        SingleOutputStreamOperator<String> sourceWithWatermarkStream = sourceStream.assignTimestampsAndWatermarks(new EventTimeExtractor());

        SingleOutputStreamOperator<Tuple2<String, Integer>> vodStream = sourceWithWatermarkStream.map(new MapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public Tuple2<String, Integer> map(String line) throws Exception {
                JSONObject jn = JSON.parseObject(line);
                return new Tuple2<String, Integer>(jn.getString("userid"), Integer.parseInt(jn.getString("seconds")));
            }
        });

        // aggregate -> AggregateFunction
        vodStream
                .timeWindowAll(Time.seconds(5))
                .aggregate(new AggregateFunction<Tuple2<String, Integer>, Integer, Integer>() {

                    // 这个函数一般在初始化时调用
                    @Override
                    public Integer createAccumulator() {
                        return 0;
                    }

                    // 当一个新元素流入时,将新元素与状态数据ACC合并,返回状态数据ACC
                    @Override
                    public Integer add(Tuple2<String, Integer> t1, Integer o) {
                        return o + t1.f1;
                    }

                    // 将两个ACC合并
                    @Override
                    public Integer getResult(Integer o) {
                        return o;
                    }

                    // 将中间数据转成结果数据
                    @Override
                    public Integer merge(Integer o, Integer acc1) {
                        return o + acc1;
                    }
                })
                .print();

        env.execute();
    }
}

4、process

public class WindowStream {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(3);
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

        FlinkKafkaConsumer010<String> consumer = new FlinkKafkaConsumer010<>("dwd", new SimpleStringSchema(), KafkaUtils.comsumerProps());
        DataStreamSource<String> sourceStream = env.addSource(consumer);
        SingleOutputStreamOperator<String> sourceWithWatermarkStream = sourceStream.assignTimestampsAndWatermarks(new EventTimeExtractor());

        SingleOutputStreamOperator<Tuple2<String, Integer>> vodStream = sourceWithWatermarkStream.map(new MapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public Tuple2<String, Integer> map(String line) throws Exception {
                JSONObject jn = JSON.parseObject(line);
                return new Tuple2<String, Integer>(jn.getString("userid"), Integer.parseInt(jn.getString("seconds")));
            }
        });

        // process -> ProcessAllWindowFunction
        vodStream
                .timeWindowAll(Time.seconds(5))
                .process(new ProcessAllWindowFunction<Tuple2<String, Integer>, Integer, TimeWindow>() {
                    // 对一个窗口内的元素进行处理,窗口内的元素缓存在Iterable<IN>,进行处理后输出到Collector<OUT>中,我们可以输出一到多个结果
                    @Override
                    public void process(Context context, Iterable<Tuple2<String, Integer>> iterable, Collector<Integer> collector) throws Exception {
                        int result = 0;
                        for (Tuple2<String, Integer> t : iterable) {
                            result = result + t.f1;
                        }
                        collector.collect(result);
                    }
                })
                .print();

        env.execute();

    }
}

?

?

public class WindowStream {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(3);
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

        FlinkKafkaConsumer010<String> consumer = new FlinkKafkaConsumer010<>("dwd", new SimpleStringSchema(), KafkaUtils.comsumerProps());
        DataStreamSource<String> sourceStream = env.addSource(consumer);
        SingleOutputStreamOperator<String> sourceWithWatermarkStream = sourceStream.assignTimestampsAndWatermarks(new EventTimeExtractor());

        SingleOutputStreamOperator<Tuple2<String, Integer>> vodStream = sourceWithWatermarkStream.map(new MapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public Tuple2<String, Integer> map(String line) throws Exception {
                JSONObject jn = JSON.parseObject(line);
                return new Tuple2<String, Integer>(jn.getString("vodid"), Integer.parseInt(jn.getString("seconds")));
            }
        });

        // 分组窗口
        // 滚动时间窗口
        vodStream
                .keyBy(0)
                .timeWindow(Time.seconds(5))
                .sum(1)
                .print();

        vodStream
                .keyBy(0)
                .timeWindow(Time.seconds(5))
                .process(new ProcessWindowFunction<Tuple2<String, Integer>, Tuple2<String, Integer>, Tuple, TimeWindow>() {
                    @Override
                    public void process(Tuple tuple, Context context, Iterable<Tuple2<String, Integer>> iterable, Collector<Tuple2<String, Integer>> collector) throws Exception {

                        Map<String, Integer> result = new HashMap<>();
                        for (Tuple2<String, Integer> t : iterable) {
                            Integer a = 0;
                            if ((a = result.get(t.f0)) != null) {
                                result.put(t.f0, a + t.f1);
                            } else {
                                result.put(t.f0, 1);
                            }
                        }
                        for (Map.Entry<String, Integer> entry : result.entrySet()) {
                            collector.collect(new Tuple2<>(entry.getKey(), entry.getValue()));
                        }
                    }
                })
                .print();
        
        env.execute();

    }
}

?

5、apply

public class WindowStream {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(3);
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

        FlinkKafkaConsumer010<String> consumer = new FlinkKafkaConsumer010<>("dwd", new SimpleStringSchema(), KafkaUtils.comsumerProps());
        DataStreamSource<String> sourceStream = env.addSource(consumer);
        SingleOutputStreamOperator<String> sourceWithWatermarkStream = sourceStream.assignTimestampsAndWatermarks(new EventTimeExtractor());

        SingleOutputStreamOperator<Tuple2<String, Integer>> vodStream = sourceWithWatermarkStream.map(new MapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public Tuple2<String, Integer> map(String line) throws Exception {
                JSONObject jn = JSON.parseObject(line);
                return new Tuple2<String, Integer>(jn.getString("vodid"), Integer.parseInt(jn.getString("seconds")));
            }
        });

        vodStream
                .keyBy(0)
                .timeWindow(Time.seconds(5))
                .apply(new WindowFunction<Tuple2<String, Integer>, Tuple2<String, Integer>, Tuple, TimeWindow>() {
                    @Override
                    public void apply(Tuple tuple, TimeWindow timeWindow, Iterable<Tuple2<String, Integer>> iterable, Collector<Tuple2<String, Integer>> collector) throws Exception {
                        Map<String, Integer> result = new HashMap<>();
                        for (Tuple2<String, Integer> t : iterable) {
                            Integer a = 0;
                            if ((a = result.get(t.f0)) != null) {
                                result.put(t.f0, a + t.f1);
                            } else {
                                result.put(t.f0, 1);
                            }
                        }
                        for (Map.Entry<String, Integer> entry : result.entrySet()) {
                            collector.collect(new Tuple2<>(entry.getKey(), entry.getValue()));
                        }
                    }
                })
                .print();
        env.execute();
    }
}

  开发工具 最新文章
Postman接口测试之Mock快速入门
ASCII码空格替换查表_最全ASCII码对照表0-2
如何使用 ssh 建立 socks 代理
Typora配合PicGo阿里云图床配置
SoapUI、Jmeter、Postman三种接口测试工具的
github用相对路径显示图片_GitHub 中 readm
Windows编译g2o及其g2o viewer
解决jupyter notebook无法连接/ jupyter连接
Git恢复到之前版本
VScode常用快捷键
上一篇文章      下一篇文章      查看所有文章
加:2022-05-08 08:19:34  更:2022-05-08 08:20:34 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/14 15:10:33-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码