难度: 简单 题目: 给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例 2:
输入:nums = [1]
输出:1
示例 3:
输入:nums = [0]
输出:0
示例 4:
输入:nums = [-1]
输出:-1
示例 5:
输入:nums = [-100000]
输出:-100000
提示:
1 <= nums.length <= 3 * 104
-105 <= nums[i] <= 105
解题: (以下为参考答案写理解思路)
- 贪心
若数组大小为1,那最大子序和就是nums[0]的大小,所以直接定义一个用来记录结果,并使其等于nums[0]。初始使pre为0;用来记录当前运算结果。每一轮都会记录最大值。
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int pre = 0, maxAns = nums[0];
for (const auto &x: nums) {
pre = max(pre + x, x);
maxAns = max(maxAns, pre);
}
return maxAns;
}
};
- 动态规划
如果nums大小为1,那就直接返回nums[0]。从下标1开始遍历数组,如果前一个元素大于0,那就加到当前数组元素上,依次往后,最终取最大值。
class Solution {
public:
int maxSubArray(vector<int>& nums) {
if(nums.size() == 1){
return nums[0];
}
for(int i = 1; i < nums.size(); ++i){
if(nums[i - 1] > 0){
nums[i] += nums[i-1];
}
}
auto it = max_element(nums.begin(),nums.end());
return *it;
}
};
|