IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> 数据结构与算法--八大排序算法(内部排序) -> 正文阅读

[数据结构与算法]数据结构与算法--八大排序算法(内部排序)

尚硅谷视频

插入排序


1、插入排序


1.1、基本思想

考虑升序排序情况:
(1)将序列划分为有序区和无序区。有序区为序列第一个元素,无序区为剩下的元素。
(2)每一次操作都将无序区的第一个元素r[i]与有序区里从最后一个元素开始向前比较,直到找到第一个比r[i]小的元素r[j],并将r[i]插入到r[j]后面;如果找不到元素比r[i]小,则r[i]要插入的位置为序列首部
(3)将r[i]插到r[j]后面,调整有序区中其它元素位置
插入排序的算法策略是减一法,即每插入一个元素后,原问题规模变成少了一个元素的子问题
在这里插入图片描述
在这里插入图片描述
例题:
对数据43,32,18,26,21,4,12,7,10,12进行插入排序,写出每趟的结果,并写出比较次数
注意:若当前数据插入到有序区最开头,与哨兵值也要比较1次

初始: (43) 32,18,26,21,4,12,7,10,12
第一趟: (32,43) 18,26,21,4,12,7,10,12 插32比较2次
第二趟: (18,32,43) 26,21,4,12,7,10,12 插18比较3次
第三趟: (18,26,32,43) 21,4,12,7,10,12 插26比较3次
第四趟: (18,21,26,32,43) 4,12,7,10,12 插21比较4次
第五趟: (4,18,21,26,32,43) 12,7,10,12 插4比较6次
第六趟: (4,12,18,21,26,32,43) 7,10,12 插12比较6次
第七趟: (4,7,12,18,21,26,32,43) 10,12 插7比较7次
第八趟: (4,7,10,12,18,21,26,32,43) 12 插10比较7次
第九趟: (4,7,10,12,12,18,21,26,32,43) 插12比较6次
共44次

1.2、代码

package sort;

import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;

public class InsertSort {

	public static void main(String[] args) {
		//int[] arr = {101, 34, 119, 1, -1, 89}; 
		// 创建要给80000个的随机的数组
		int[] arr = new int[80000];
		for (int i = 0; i < 80000; i++) {
			arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
		}

		System.out.println("插入排序前");
		Date data1 = new Date();
		SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
		String date1Str = simpleDateFormat.format(data1);
		System.out.println("排序前的时间是=" + date1Str);
		
		insertSort(arr); //调用插入排序算法
		
		Date data2 = new Date();
		String date2Str = simpleDateFormat.format(data2);
		System.out.println("排序前的时间是=" + date2Str);
		
		//System.out.println(Arrays.toString(arr));
		
		
		
		
	}
	
	//插入排序
	public static void insertSort(int[] arr) {
		int insertVal = 0;
		int insertIndex = 0;
		//使用for循环来把代码简化
		for(int i = 1; i < arr.length; i++) {
			//定义待插入的数
			insertVal = arr[i];
			insertIndex = i - 1; // 即arr[1]的前面这个数的下标
	
			// 给insertVal 找到插入的位置
			// 说明
			// 1. insertIndex >= 0 保证在给insertVal 找插入位置,不越界
			// 2. insertVal < arr[insertIndex] 待插入的数,还没有找到插入位置
			// 3. 就需要将 arr[insertIndex] 后移
			while (insertIndex >= 0 && insertVal < arr[insertIndex]) {
				arr[insertIndex + 1] = arr[insertIndex];// arr[insertIndex]
				insertIndex--;
			}
			// 当退出while循环时,说明插入的位置找到, insertIndex + 1
			// 举例:理解不了,我们一会 debug
			//这里我们判断是否需要赋值
			if(insertIndex + 1 != i) {
				arr[insertIndex + 1] = insertVal;//这里+1的因为找到了有序中的第一个比要插入的数据小的位置,然后要插入到他后面,所以就是+1
			}
	
			//System.out.println("第"+i+"轮插入");
			//System.out.println(Arrays.toString(arr));
		}
		
		
		/*
		
		
		//使用逐步推导的方式来讲解,便利理解
		//第1轮 {101, 34, 119, 1};  => {34, 101, 119, 1}
		
		
		//{101, 34, 119, 1}; => {101,101,119,1}
		//定义待插入的数
		int insertVal = arr[1];
		int insertIndex = 1 - 1; //即arr[1]的前面这个数的下标
		
		//给insertVal 找到插入的位置
		//说明
		//1. insertIndex >= 0 保证在给insertVal 找插入位置,不越界
		//2. insertVal < arr[insertIndex] 待插入的数,还没有找到插入位置
		//3. 就需要将 arr[insertIndex] 后移
		while(insertIndex >= 0 && insertVal < arr[insertIndex] ) {
			arr[insertIndex + 1] = arr[insertIndex];// arr[insertIndex]
			insertIndex--;
		}
		//当退出while循环时,说明插入的位置找到, insertIndex + 1
		//举例:理解不了,我们一会 debug
		arr[insertIndex + 1] = insertVal;
		
		System.out.println("第1轮插入");
		System.out.println(Arrays.toString(arr));
		
		//第2轮
		insertVal = arr[2];
		insertIndex = 2 - 1; 
		
		while(insertIndex >= 0 && insertVal < arr[insertIndex] ) {
			arr[insertIndex + 1] = arr[insertIndex];// arr[insertIndex]
			insertIndex--;
		}
		
		arr[insertIndex + 1] = insertVal;
		System.out.println("第2轮插入");
		System.out.println(Arrays.toString(arr));
		
		
		//第3轮
		insertVal = arr[3];
		insertIndex = 3 - 1;

		while (insertIndex >= 0 && insertVal < arr[insertIndex]) {
			arr[insertIndex + 1] = arr[insertIndex];// arr[insertIndex]
			insertIndex--;
		}

		arr[insertIndex + 1] = insertVal;
		System.out.println("第3轮插入");
		System.out.println(Arrays.toString(arr)); */
		
	}

}

1.3、总结

1、定义要插入的数和要插入的数的前一个元素的下标位置;
2、while循环保证有序区元素没有越界和要插入的数据比有序区的元素小,小的话说明没有找到,那么就将前一个元素的往后移动,前一个元素的下标减1
3、如果不满足while循环条件的话,那么说明有序区的元素中找到有比要插入的数据小的元素,将要插入的数据插入到这个有序区元素的后面

2、希尔排序


当需要插入的数是较小的数时,后移的次数明显增多,对效率有影响。希尔排序是希尔于1959年提出的一种排序算法,希尔排序是一种插入排序,他是简单插入排序经过改进之后的一个更高效的版本,也称为缩小增量排序。

2.1、基本思想

希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止
在这里插入图片描述

2.2、应用实例

有一群小牛, 考试成绩分别是 {8,9,1,7,2,3,5,4,6,0} 请从小到大排序. 请分别使用

  1. 希尔排序时, 对有序序列在插入时采用交换法, 并测试排序速度.
  2. 希尔排序时, 对有序序列在插入时采用移动法, 并测试排序速度

代码:

package sort;

import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;

public class ShellSort {

	public static void main(String[] args) {
		//int[] arr = { 8, 9, 1, 7, 2, 3, 5, 4, 6, 0 };
		
		// 创建要给80000个的随机的数组
		int[] arr = new int[8000000];
		for (int i = 0; i < 8000000; i++) {
			arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
		}

		System.out.println("排序前");
		Date data1 = new Date();
		SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
		String date1Str = simpleDateFormat.format(data1);
		System.out.println("排序前的时间是=" + date1Str);
		
		//shellSort(arr); //交换式
		shellSort2(arr);//移位方式
		
		Date data2 = new Date();
		String date2Str = simpleDateFormat.format(data2);
		System.out.println("排序前的时间是=" + date2Str);
		
		//System.out.println(Arrays.toString(arr));
	}

	// 使用逐步推导的方式来编写希尔排序
	// 希尔排序时, 对有序序列在插入时采用交换法, 
	// 思路(算法) ===> 代码
	public static void shellSort(int[] arr) {
		
		int temp = 0;
		int count = 0;
		// 根据前面的逐步分析,使用循环处理
		for (int gap = arr.length / 2; gap > 0; gap /= 2) {
			for (int i = gap; i < arr.length; i++) {
				// 遍历各组中所有的元素(共gap组,每组有个元素), 步长gap
				for (int j = i - gap; j >= 0; j -= gap) {
					// 如果当前元素大于加上步长后的那个元素,说明交换
					if (arr[j] > arr[j + gap]) {
						temp = arr[j];
						arr[j] = arr[j + gap];
						arr[j + gap] = temp;
					}
				}
			}
			//System.out.println("希尔排序第" + (++count) + "轮 =" + Arrays.toString(arr));
		}
		
		/*
		
		// 希尔排序的第1轮排序
		// 因为第1轮排序,是将10个数据分成了 5组
		for (int i = 5; i < arr.length; i++) {
			// 遍历各组中所有的元素(共5组,每组有2个元素), 步长5
			for (int j = i - 5; j >= 0; j -= 5) {
				// 如果当前元素大于加上步长后的那个元素,说明交换
				if (arr[j] > arr[j + 5]) {
					temp = arr[j];
					arr[j] = arr[j + 5];
					arr[j + 5] = temp;
				}
			}
		}
		
		System.out.println("希尔排序1轮后=" + Arrays.toString(arr));//
		
		
		// 希尔排序的第2轮排序
		// 因为第2轮排序,是将10个数据分成了 5/2 = 2组
		for (int i = 2; i < arr.length; i++) {
			// 遍历各组中所有的元素(共5组,每组有2个元素), 步长5
			for (int j = i - 2; j >= 0; j -= 2) {
				// 如果当前元素大于加上步长后的那个元素,说明交换
				if (arr[j] > arr[j + 2]) {
					temp = arr[j];
					arr[j] = arr[j + 2];
					arr[j + 2] = temp;
				}
			}
		}

		System.out.println("希尔排序2轮后=" + Arrays.toString(arr));//

		// 希尔排序的第3轮排序
		// 因为第3轮排序,是将10个数据分成了 2/2 = 1组
		for (int i = 1; i < arr.length; i++) {
			// 遍历各组中所有的元素(共5组,每组有2个元素), 步长5
			for (int j = i - 1; j >= 0; j -= 1) {
				// 如果当前元素大于加上步长后的那个元素,说明交换
				if (arr[j] > arr[j + 1]) {
					temp = arr[j];
					arr[j] = arr[j + 1];
					arr[j + 1] = temp;
				}
			}
		}

		System.out.println("希尔排序3轮后=" + Arrays.toString(arr));//
		*/
	}
	
	//对交换式的希尔排序进行优化->移位法
	public static void shellSort2(int[] arr) {
		
		// 增量gap, 并逐步的缩小增量
		for (int gap = arr.length / 2; gap > 0; gap /= 2) {
			// 从第gap个元素,逐个对其所在的组进行直接插入排序
			for (int i = gap; i < arr.length; i++) {
				int j = i;
				int temp = arr[j];
				if (arr[j] < arr[j - gap]) {
					while (j - gap >= 0 && temp < arr[j - gap]) {
						//移动
						arr[j] = arr[j-gap];
						j -= gap;
					}
					//当退出while后,就给temp找到插入的位置
					arr[j] = temp;
				}

			}
		}
	}

}

交换法

1、for循环分组,所有数据除以2得到步长
2、for循环数据中分为几组开始遍历数组
3、for循环变量各组元素,各组元素之间的下标相差步长的距离
4、if判断如果遍历到的各组元素中的前面元素大于后面的元素,那么两者交换位置。

// 使用逐步推导的方式来编写希尔排序
	// 希尔排序时, 对有序序列在插入时采用交换法, 
	// 思路(算法) ===> 代码
	public static void shellSort(int[] arr) {
		
		int temp = 0;
		int count = 0;
		// 根据前面的逐步分析,使用循环处理
		for (int gap = arr.length / 2; gap > 0; gap /= 2) {
			for (int i = gap; i < arr.length; i++) {
				// 遍历各组中所有的元素(共gap组,每组有个元素), 步长gap
				for (int j = i - gap; j >= 0; j -= gap) {
					// 如果当前元素大于加上步长后的那个元素,说明交换
					if (arr[j] > arr[j + gap]) {
						temp = arr[j];
						arr[j] = arr[j + gap];
						arr[j + gap] = temp;
					}
				}
			}
			//System.out.println("希尔排序第" + (++count) + "轮 =" + Arrays.toString(arr));
		}

移动法

1、for循环逐步缩小增量gap
2、从第gap个元素开始,for遍历后面是数组
3、定义要增量前元素为j位置,要插入的数为j+gap位置
4、while确保不越界和判断要插入的数小于增量前的元素,说明没有找到
5、没有找到就移动增量前的元素到要插入的数的位置,移动增量前的元素移动增量个位置
6、将要插入的数放到增量前元素的位置

//对交换式的希尔排序进行优化->移位法
	public static void shellSort2(int[] arr) {
		
		// 增量gap, 并逐步的缩小增量
		for (int gap = arr.length / 2; gap > 0; gap /= 2) {
			// 从第gap个元素,逐个对其所在的组进行直接插入排序
			for (int i = gap; i < arr.length; i++) {
				int j = i;
				int temp = arr[j];
				if (arr[j] < arr[j - gap]) {
					while (j - gap >= 0 && temp < arr[j - gap]) {
						//移动
						arr[j] = arr[j-gap];
						j -= gap;
					}
					//当退出while后,就给temp找到插入的位置
					arr[j] = temp;
				}

			}
		}
	}

选择排序


3、选择排序


选择式排序也属于内部排序法,是从欲排序的数据中,按指定的规则选出某一元素,再依规定交换位置后达到排序的目的。

3.1、基本思想

  • 将序列划分成有序区(左边)和无序区(右边)
  • 初始时,有序区为空,无序区为序列全部
  • 每一次选择出无序区中最小元素,与无序区中第1个元素交换,成为有序区的最后一个元素

真题:对数据48,70,8,30,23,11,15进行选择排序,写出每趟的结果
解:每次都从无序区中选择最小元素与无序区第一个元素交换成为有序区末尾
初始: ()48,70,8,30,23,11,15
第1趟:(8)70,48,30,23,11,15
第2趟:(8,11)48,30,23, 70,15
第3趟:(8,11,15)30,23, 70,48
第4趟:(8,11,15,23)30, 70,48
第5趟:(8,11,15,23,30)70,48
第6趟:(8,11,15,23,30,48)70

在这里插入图片描述
在这里插入图片描述

3.2、应用实例

有一群牛 , 颜值分别是 101, 34, 119, 1 请使用选择排序从低到高进行排序 [101, 34, 119, 1]

package com.atguigu.sort;

import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;
//选择排序
public class SelectSort {

	public static void main(String[] args) {
		//int [] arr = {101, 34, 119, 1, -1, 90, 123};
		
		//创建要给80000个的随机的数组
		int[] arr = new int[80000];
		for (int i = 0; i < 80000; i++) {
			arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
		}
		
		System.out.println("排序前");
		//System.out.println(Arrays.toString(arr));
		
		Date data1 = new Date();
		SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
		String date1Str = simpleDateFormat.format(data1);
		System.out.println("排序前的时间是=" + date1Str);
		
		selectSort(arr);
		
		
		Date data2 = new Date();
		String date2Str = simpleDateFormat.format(data2);
		System.out.println("排序前的时间是=" + date2Str);
		
		//System.out.println("排序后");
		//System.out.println(Arrays.toString(arr));
		
		
	}
	
	//选择排序
	public static void selectSort(int[] arr) {
		
		
		
		//在推导的过程,我们发现了规律,因此,可以使用for来解决
		//选择排序时间复杂度是 O(n^2)
		for (int i = 0; i < arr.length - 1; i++) {
			int minIndex = i;
			int min = arr[i];
			for (int j = i + 1; j < arr.length; j++) {
				if (min > arr[j]) { // 说明假定的最小值,并不是最小
					min = arr[j]; // 重置min
					minIndex = j; // 重置minIndex
				}
			}

			// 将最小值,放在arr[0], 即交换
			if (minIndex != i) {
				arr[minIndex] = arr[i];
				arr[i] = min;
			}

			//System.out.println("第"+(i+1)+"轮后~~");
			//System.out.println(Arrays.toString(arr));// 1, 34, 119, 101
		}
		
		
		/*
		
		//使用逐步推导的方式来,讲解选择排序
		//第1轮
		//原始的数组 : 	101, 34, 119, 1
		//第一轮排序 :   	1, 34, 119, 101
		//算法 先简单--》 做复杂, 就是可以把一个复杂的算法,拆分成简单的问题-》逐步解决
		
		//第1轮
		int minIndex = 0;
		int min = arr[0];
		for(int j = 0 + 1; j < arr.length; j++) {
			if (min > arr[j]) { //说明假定的最小值,并不是最小
				min = arr[j]; //重置min
				minIndex = j; //重置minIndex
			}
		}
		
		
		//将最小值,放在arr[0], 即交换
		if(minIndex != 0) {
			arr[minIndex] = arr[0];
			arr[0] = min;
		}
		
		System.out.println("第1轮后~~");
		System.out.println(Arrays.toString(arr));// 1, 34, 119, 101
		
		
		//第2轮
		minIndex = 1;
		min = arr[1];
		for (int j = 1 + 1; j < arr.length; j++) {
			if (min > arr[j]) { // 说明假定的最小值,并不是最小
				min = arr[j]; // 重置min
				minIndex = j; // 重置minIndex
			}
		}

		// 将最小值,放在arr[0], 即交换
		if(minIndex != 1) {
			arr[minIndex] = arr[1];
			arr[1] = min;
		}

		System.out.println("第2轮后~~");
		System.out.println(Arrays.toString(arr));// 1, 34, 119, 101
		
		//第3轮
		minIndex = 2;
		min = arr[2];
		for (int j = 2 + 1; j < arr.length; j++) {
			if (min > arr[j]) { // 说明假定的最小值,并不是最小
				min = arr[j]; // 重置min
				minIndex = j; // 重置minIndex
			}
		}

		// 将最小值,放在arr[0], 即交换
		if (minIndex != 2) {
			arr[minIndex] = arr[2];
			arr[2] = min;
		}

		System.out.println("第3轮后~~");
		System.out.println(Arrays.toString(arr));// 1, 34, 101, 119 */

		
	}

}

4、堆排序


问题:采用堆结构来描述数据,并在此基础上实现排序
定义:堆——具有以下性质的完全二叉树:
每个结点的值都小于或等于左右孩子结点的值(小根堆);或者每个结点的值都大于或等于其左右孩子结点的值(大根堆)。
在这里插入图片描述

4.1、基本思想

(1)根据堆的特性,将待排序序列建立堆。升序排序采用大根堆;降序排序采用小根堆
(2)堆顶元素为最大值(大根堆)或最小值(小根堆),将该元素与最后一个元素交换并移入有序区
(3)调整无序区为一个堆结构
(4)重复(2)和(3)直到无序区剩一个元素
由于每次交换堆顶元素并调整堆后,无序区都是比原问题少一个元素的堆,因此堆排序也是采用减一法的设计策略

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

示例2(以序列{1,2,9,11,4,6,8,10,16,5}为例)
(1)建立堆
① 按广度优先方式建立完全二叉树,每个结点的编号按广度优先分配,如根结点为1号,最后的结点(5)为10号
在这里插入图片描述

② 采用筛选法调整为大根堆,从编号为[n/2]?5的结点开始往前调整
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(2)交换
建立好大根堆后,堆顶元素即为最大值,将堆顶元素与最后的元素进行交换
在这里插入图片描述
在这里插入图片描述

(3)调整堆
采用筛选法对根结点进行调整
在这里插入图片描述
(4)重复交换与调整
在这里插入图片描述

4.2、应用实例

要求:给你一个数组 {4,6,8,5,9} , 要求使用堆排序法,将数组升序排序。

package com.atguigu.tree;

import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;

public class HeapSort {

	public static void main(String[] args) {
		//要求将数组进行升序排序
		//int arr[] = {4, 6, 8, 5, 9};
		// 创建要给80000个的随机的数组
		int[] arr = new int[8000000];
		for (int i = 0; i < 8000000; i++) {
			arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
		}

		System.out.println("排序前");
		Date data1 = new Date();
		SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
		String date1Str = simpleDateFormat.format(data1);
		System.out.println("排序前的时间是=" + date1Str);
		
		heapSort(arr);
		
		Date data2 = new Date();
		String date2Str = simpleDateFormat.format(data2);
		System.out.println("排序前的时间是=" + date2Str);
		//System.out.println("排序后=" + Arrays.toString(arr));
	}

	//编写一个堆排序的方法
	public static void heapSort(int arr[]) {
		int temp = 0;
		System.out.println("堆排序!!");
		
//		//分步完成
//		adjustHeap(arr, 1, arr.length);
//		System.out.println("第一次" + Arrays.toString(arr)); // 4, 9, 8, 5, 6
//		
//		adjustHeap(arr, 0, arr.length);
//		System.out.println("第2次" + Arrays.toString(arr)); // 9,6,8,5,4
		
		//完成我们最终代码
		//将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆
		for(int i = arr.length / 2 -1; i >=0; i--) {
			adjustHeap(arr, i, arr.length);
		}
		
		/*
		 * 2).将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
  			3).重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
		 */
		for(int j = arr.length-1;j >0; j--) {
			//交换
			temp = arr[j];
			arr[j] = arr[0];
			arr[0] = temp;
			adjustHeap(arr, 0, j); 
		}
		
		//System.out.println("数组=" + Arrays.toString(arr)); 
		
	}
	
	//将一个数组(二叉树), 调整成一个大顶堆
	/**
	 * 功能: 完成 将 以 i 对应的非叶子结点的树调整成大顶堆
	 * 举例  int arr[] = {4, 6, 8, 5, 9}; => i = 1 => adjustHeap => 得到 {4, 9, 8, 5, 6}
	 * 如果我们再次调用  adjustHeap 传入的是 i = 0 => 得到 {4, 9, 8, 5, 6} => {9,6,8,5, 4}
	 * @param arr 待调整的数组
	 * @param i 表示非叶子结点在数组中索引
	 * @param lenght 表示对多少个元素继续调整, length 是在逐渐的减少
	 */
	public  static void adjustHeap(int arr[], int i, int lenght) {
		
		int temp = arr[i];//先取出当前元素的值,保存在临时变量
		//开始调整
		//说明
		//1. k = i * 2 + 1 k 是 i结点的左子结点
		for(int k = i * 2 + 1; k < lenght; k = k * 2 + 1) {
			if(k+1 < lenght && arr[k] < arr[k+1]) { //说明左子结点的值小于右子结点的值
				k++; // k 指向右子结点
			}
			if(arr[k] > temp) { //如果子结点大于父结点
				arr[i] = arr[k]; //把较大的值赋给当前结点
				i = k; //!!! i 指向 k,继续循环比较
			} else {
				break;//!
			}
		}
		//当for 循环结束后,我们已经将以i 为父结点的树的最大值,放在了 最顶(局部)
		arr[i] = temp;//将temp值放到调整后的位置
	}
	
}

交换排序


5、起泡排序


5.1、基本思想

  • 将序列划分成有序区(右边)和无序区(左边)
  • 初始时,有序区为空,无序区为序列全部
  • 每一次“起泡”相邻元素依次两两比较,若发现逆序则交换,使值较大
    的元素逐渐从前移向后部,就象水底下的气泡一样逐渐
    向上冒。

例:采用起泡排序法对数据48,70,8,30,23,11,15进行升序排序,写出每趟的结果
解:
初始: 48,70,8,30,23,11,15()
第1趟起泡:
48,70,8,30,23,11,15
48,8,70,30,23,11,15
48,8,30,70,23,11,15
48,8,30,23,70,11,15
48,8,30,23,11,70,15
48,8,30,23,11,15,(70)
第2趟起泡:
8,48,30,23,11,15,(70)
8,30,48,23,11,15,(70)
8,30,23,48,11,15,(70)
8,30,23,11,48,15,(70)
8,30,23,11,15,(48, 70)
第3趟起泡:
8,30,23,11,15,(48, 70)
8,23,30,11,15,(48, 70)
8,23,11,30,15,(48, 70)
8,23,11,15,(30,48, 70)
第4趟起泡:
8,23,11,15,(30,48, 70)
8,11,23,15,(30,48, 70)
8,11,15,(23,30,48, 70)
第5趟起泡:
8,11,15,(23,30,48, 70)
8,11,(15,23,30,48, 70)
第6趟起泡:
8,(11,15,23,30,48, 70)

5.2、应用实例

  • 因为排序的过程中,各元素不断接近自己的位置,如果一趟比较下来没有进行过交换,就说明序列有序,因此要在排序过程中设置一个标志flag判断元素是否进行过交换。从而减少不必要的比较。(这里说的优化,可以在冒泡排序写好后,在进行)
  • 我们举一个具体的案例来说明冒泡法。我们将五个无序的数:3, 9, -1, 10, -2 使用冒泡排序法将其排成一个从小到大的有序数列。
package sort;

import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;



//冒泡排序
public class BubbleSort {
	public static void main(String[] args) {
//		int arr[] = {3, 9, -1, 10, 20};
//		
//		System.out.println("排序前");
//		System.out.println(Arrays.toString(arr));
		
		//为了容量理解,我们把冒泡排序的演变过程,给大家展示
		
		//测试一下冒泡排序的速度O(n^2), 给80000个数据,测试
		//创建要给80000个的随机的数组
		int[] arr = new int[80000];
		for(int i =0; i < 80000;i++) {
			arr[i] = (int)(Math.random() * 8000000); //生成一个[0, 8000000) 数
		}
		
		Date data1 = new Date();
		SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
		String date1Str = simpleDateFormat.format(data1);
		System.out.println("排序前的时间是=" + date1Str);
		
		//测试冒泡排序
		bubbleSort(arr);
		
		Date data2 = new Date();
		String date2Str = simpleDateFormat.format(data2);
		System.out.println("排序后的时间是=" + date2Str);
		
		//System.out.println("排序后");
		//System.out.println(Arrays.toString(arr));
		
		
		/*
//		第一趟排序,就是将最大的数排在最后
        int temp=0;//临时变量
		for (int j = 0; j < arr.length - 1 ; j++) {
			// 如果前面的数比后面的数大,则交换
			if (arr[j] > arr[j + 1]) {
				temp = arr[j];
				arr[j] = arr[j + 1];
				arr[j + 1] = temp;
			}
		}
		
		// 第二趟排序,就是将第二大的数排在倒数第二位
		
		for (int j = 0; j < arr.length - 1 - 1 ; j++) {
			// 如果前面的数比后面的数大,则交换
			if (arr[j] > arr[j + 1]) {
				temp = arr[j];
				arr[j] = arr[j + 1];
				arr[j + 1] = temp;
			}
		}
		
		System.out.println("第二趟排序后的数组");
		System.out.println(Arrays.toString(arr));
		
		
		// 第三趟排序,就是将第三大的数排在倒数第三位
		
		for (int j = 0; j < arr.length - 1 - 2; j++) {
			// 如果前面的数比后面的数大,则交换
			if (arr[j] > arr[j + 1]) {
				temp = arr[j];
				arr[j] = arr[j + 1];
				arr[j + 1] = temp;
			}
		}

		System.out.println("第三趟排序后的数组");
		System.out.println(Arrays.toString(arr));
		
		// 第四趟排序,就是将第4大的数排在倒数第4位

		for (int j = 0; j < arr.length - 1 - 3; j++) {
			// 如果前面的数比后面的数大,则交换
			if (arr[j] > arr[j + 1]) {
				temp = arr[j];
				arr[j] = arr[j + 1];
				arr[j + 1] = temp;
			}
		}

		System.out.println("第四趟排序后的数组");
		System.out.println(Arrays.toString(arr)); */
		
	}
	
	// 将前面额冒泡排序算法,封装成一个方法
	public static void bubbleSort(int[] arr) {
		// 冒泡排序 的时间复杂度 O(n^2), 自己写出
		int temp = 0; // 临时变量
		boolean flag = false; // 标识变量,表示是否进行过交换
		for (int i = 0; i < arr.length - 1; i++) {

			for (int j = 0; j < arr.length - 1 - i; j++) {
				// 如果前面的数比后面的数大,则交换
				if (arr[j] > arr[j + 1]) {
					flag = true;
					temp = arr[j];
					arr[j] = arr[j + 1];
					arr[j + 1] = temp;
				}
			}
			//System.out.println("第" + (i + 1) + "趟排序后的数组");
			//System.out.println(Arrays.toString(arr));

			if (!flag) { // 在一趟排序中,一次交换都没有发生过
				break;
			} else {
				flag = false; // 重置flag!!!, 进行下次判断
			}
		}
	}

}

6、快速排序


6.1、基本思想

快速排序(Quicksort)是对冒泡排序的一种改进。

(1)划分:选定一个数做为轴值,把序列分成比轴值小(左边)和比轴值大(右边)两个子序列

  • 选定第一个元素作为轴值,下标用i标记,后面的元素用j标记;从后面和前面比较,后面的值比轴值大就后面的下标向前移动一位,如果后面的比前面的小,那么两个元素交换位置,前面的下标向后移动一位;交换后之前是轴值有j标记,所以下次比较如果后面的大于前面的就是i向后移动不是j向前移动。
  • 当i和j重合时结束
    在这里插入图片描述
    (2)求解子问题:分别对两个子序列进行轴值划分
    (3)合并:不需要合并!!

例:采用排序方法对以下序列进行排序,写出每一趟的排序结果:
48,70,8,30,23,11,15,28
解:
初始: 48,70,8,30,23,11,15,28
第一趟: [28,15,8,30,23,11],(48),[70]
第二趟: [11,15,8,23],(28),[30],(48),[70]
第三趟: [8],(11),[15,23],(28),[30],(48),[70]
第四趟: (8,11),[15,23],(28),[30],(48),[70]
第五趟: (8,11,15),[23],(28),[30],(48),[70]
第六趟: (8,11,15,23,28),[30],(48),[70]
第七趟: (8,11,15,23,28,30,48),[70]
第八趟: 8,11,15,23,28,30,48,70

加粗 表示轴值;
圆括号表示已经排好的数
中括号表示待排序的区

6.2、应用实例

要求: 对 [-9,78,0,23,-567,70] 进行从小到大的排序,要求使用快速排序法。

package sort;

import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;
//快速排序
public class QuickSort {

	public static void main(String[] args) {
		//int[] arr = {-9,78,0,23,-567,70, -1,900, 4561};
		
		//测试快排的执行速度
		// 创建要给80000个的随机的数组
		int[] arr = new int[8000000];
		for (int i = 0; i < 8000000; i++) {
			arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
		}
		
		System.out.println("排序前");
		Date data1 = new Date();
		SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
		String date1Str = simpleDateFormat.format(data1);
		System.out.println("排序前的时间是=" + date1Str);
		
		quickSort(arr, 0, arr.length-1);
		
		Date data2 = new Date();
		String date2Str = simpleDateFormat.format(data2);
		System.out.println("排序前的时间是=" + date2Str);
		//System.out.println("arr=" + Arrays.toString(arr));
	}

	public static void quickSort(int[] arr,int left, int right) {
		int l = left; //左下标
		int r = right; //右下标
		//pivot 中轴值
		int pivot = arr[(left + right) / 2];
		int temp = 0; //临时变量,作为交换时使用
		//while循环的目的是让比pivot 值小放到左边
		//比pivot 值大放到右边
		while( l < r) { 
			//在pivot的左边一直找,找到大于等于pivot值,才退出
			while( arr[l] < pivot) {
				l += 1;
			}
			//在pivot的右边一直找,找到小于等于pivot值,才退出
			while(arr[r] > pivot) {
				r -= 1;
			}
			//如果l >= r说明pivot 的左右两的值,已经按照左边全部是
			//小于等于pivot值,右边全部是大于等于pivot值
			if( l >= r) {
				break;
			}
			
			//交换
			temp = arr[l];
			arr[l] = arr[r];
			arr[r] = temp;
			
			//如果交换完后,发现这个arr[l] == pivot值 相等 r--, 前移
			if(arr[l] == pivot) {
				r -= 1;
			}
			//如果交换完后,发现这个arr[r] == pivot值 相等 l++, 后移
			if(arr[r] == pivot) {
				l += 1;
			}
		}
		
		// 如果 l == r, 必须l++, r--, 否则为出现栈溢出
		if (l == r) {
			l += 1;
			r -= 1;
		}
		//向左递归
		if(left < r) {
			quickSort(arr, left, r);
		}
		//向右递归
		if(right > l) {
			quickSort(arr, l, right);
		}
		
		
	}
}

6.3、算法分析

在这里插入图片描述
在这里插入图片描述
关于快速排序的你可能不知道的事
(1)快速排序的适用场合
根据时间复杂度分析,快速排序对已有序(不管是正序还是逆序)的序列,效率最差。

(2)快速排序属于“有序度增长法”,虽然每次划分得到的序列并非有序,但每次划分实质上是找出轴值在排序后的位置,即每次划分是对轴值进行排序

(3)假如某次划分后,轴值所在位置为i,实质上表明该轴值在序列中是第i小的值(注意,这里说的序列是参与划分的序列),因此可借助快速排序的划分操作实现“求序列第i小数”

归并排序


7、归并排序


7.1、基本思想

将序列划分成两个长度相等的子序列,分别进行排序,最后将两个有序序列合并
步骤:

  • 将序列分成两段相等长度的子序列
  • 从两段序列的第一个元素开始比较两段序列的元素,取当前较小的值为新序列的元素
  • 将采纳的子序列下标向后移动,采纳的元素添加到新的队列中。
  • 当其中一个序列全部移动到新序列后,剩余序列直接拷贝
    在这里插入图片描述

真题:对数据48,70,8,30,23,11,15,28进行归并排序,写出每趟的结果
① 划分:
48,70,8,30 23,11,15,28
48,70 8,30 23,11 15,28
48 70 8 30 23 11 15 28

② 求解子问题,并合并子问题:
第一趟: 48 70 8 30 23 11 15 28
第二趟: 48,70 8,30 11,23 15,28
第三趟: 8,30,48,70 11,15,23,28
第四趟: 8,11,15,23,28,30,48,70

7.2、应用实例

给你一个数组, val arr = Array(9,8,7,6,5,4,3,2,1), 请使用归并排序完成

package sort;

import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;

public class MergetSort {

	public static void main(String[] args) {
		//int arr[] = { 8, 4, 5, 7, 1, 3, 6, 2 }; //
		
		//测试快排的执行速度
		// 创建要给80000个的随机的数组
		int[] arr = new int[8000000];
		for (int i = 0; i < 8000000; i++) {
			arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
		}
		System.out.println("排序前");
		Date data1 = new Date();
		SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
		String date1Str = simpleDateFormat.format(data1);
		System.out.println("排序前的时间是=" + date1Str);
		
		int temp[] = new int[arr.length]; //归并排序需要一个额外空间
 		mergeSort(arr, 0, arr.length - 1, temp);
 		
 		Date data2 = new Date();
		String date2Str = simpleDateFormat.format(data2);
		System.out.println("排序前的时间是=" + date2Str);
 		
 		//System.out.println("归并排序后=" + Arrays.toString(arr));
	}
	
	
	//分+合方法
	public static void mergeSort(int[] arr, int left, int right, int[] temp) {
		if(left < right) {
			int mid = (left + right) / 2; //中间索引
			//向左递归进行分解
			mergeSort(arr, left, mid, temp);
			//向右递归进行分解
			mergeSort(arr, mid + 1, right, temp);
			//合并
			merge(arr, left, mid, right, temp);
			
		}
	}
	
	//合并的方法
	/**
	 * 
	 * @param arr 排序的原始数组
	 * @param left 左边有序序列的初始索引
	 * @param mid 中间索引
	 * @param right 右边索引
	 * @param temp 做中转的数组
	 */
	public static void merge(int[] arr, int left, int mid, int right, int[] temp) {
		
		int i = left; // 初始化i, 左边有序序列的初始索引
		int j = mid + 1; //初始化j, 右边有序序列的初始索引
		int t = 0; // 指向temp数组的当前索引
		
		//(一)
		//先把左右两边(有序)的数据按照规则填充到temp数组
		//直到左右两边的有序序列,有一边处理完毕为止
		while (i <= mid && j <= right) {//继续
			//如果左边的有序序列的当前元素,小于等于右边有序序列的当前元素
			//即将左边的当前元素,填充到 temp数组 
			//然后 t++, i++
			if(arr[i] <= arr[j]) {
				temp[t] = arr[i];
				t += 1;
				i += 1;
			} else { //反之,将右边有序序列的当前元素,填充到temp数组
				temp[t] = arr[j];
				t += 1;
				j += 1;
			}
		}
		
		//(二)
		//把有剩余数据的一边的数据依次全部填充到temp
		while( i <= mid) { //左边的有序序列还有剩余的元素,就全部填充到temp
			temp[t] = arr[i];
			t += 1;
			i += 1;	
		}
		
		while( j <= right) { //右边的有序序列还有剩余的元素,就全部填充到temp
			temp[t] = arr[j];
			t += 1;
			j += 1;	
		}
		
		
		//(三)
		//将temp数组的元素拷贝到arr
		//注意,并不是每次都拷贝所有
		t = 0;
		int tempLeft = left; // 
		//第一次合并 tempLeft = 0 , right = 1 //  tempLeft = 2  right = 3 // tL=0 ri=3
		//最后一次 tempLeft = 0  right = 7
		while(tempLeft <= right) { 
			arr[tempLeft] = temp[t];
			t += 1;
			tempLeft += 1;
		}
		
	}

}

基数排序


8、基数排序


8.1、基本思想

  1. 将所有待比较数值统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。
  2. 这样说明,比较难理解,下面我们看一个图文解释,理解基数排序的步骤
    基数排序图文说明:将数组 {53, 3, 542, 748, 14, 214} 使用基数排序, 进行升序排序。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

8.2、应用实例

将数组 {53, 3, 542, 748, 14, 214 } 使用基数排序, 进行升序排序

package sort;

import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;

public class RadixSort {

	public static void main(String[] args) {
		int arr[] = { 53, 3, 542, 748, 14, 214};
		
		// 80000000 * 11 * 4 / 1024 / 1024 / 1024 =3.3G 
//		int[] arr = new int[8000000];
//		for (int i = 0; i < 8000000; i++) {
//			arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
//		}
		System.out.println("排序前");
		Date data1 = new Date();
		SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
		String date1Str = simpleDateFormat.format(data1);
		System.out.println("排序前的时间是=" + date1Str);
		
		radixSort(arr);
		
		Date data2 = new Date();
		String date2Str = simpleDateFormat.format(data2);
		System.out.println("排序前的时间是=" + date2Str);
		
		System.out.println("基数排序后 " + Arrays.toString(arr));
		
	}

	//基数排序方法
	public static void radixSort(int[] arr) {
		
		//根据前面的推导过程,我们可以得到最终的基数排序代码
		
		//1. 得到数组中最大的数的位数
		int max = arr[0]; //假设第一数就是最大数
		for(int i = 1; i < arr.length; i++) {
			if (arr[i] > max) {
				max = arr[i];
			}
		}
		//得到最大数是几位数
		int maxLength = (max + "").length();
		
		
		//定义一个二维数组,表示10个桶, 每个桶就是一个一维数组
		//说明
		//1. 二维数组包含10个一维数组
		//2. 为了防止在放入数的时候,数据溢出,则每个一维数组(桶),大小定为arr.length
		//3. 名明确,基数排序是使用空间换时间的经典算法
		int[][] bucket = new int[10][arr.length];
		
		//为了记录每个桶中,实际存放了多少个数据,我们定义一个一维数组来记录各个桶的每次放入的数据个数
		//可以这里理解
		//比如:bucketElementCounts[0] , 记录的就是  bucket[0] 桶的放入数据个数
		int[] bucketElementCounts = new int[10];
		
		
		//这里我们使用循环将代码处理
		
		for(int i = 0 , n = 1; i < maxLength; i++, n *= 10) {
			//(针对每个元素的对应位进行排序处理), 第一次是个位,第二次是十位,第三次是百位..
			for(int j = 0; j < arr.length; j++) {
				//取出每个元素的对应位的值
				int digitOfElement = arr[j] / n % 10;
				//放入到对应的桶中
				bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
				bucketElementCounts[digitOfElement]++;
			}
			//按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
			int index = 0;
			//遍历每一桶,并将桶中是数据,放入到原数组
			for(int k = 0; k < bucketElementCounts.length; k++) {
				//如果桶中,有数据,我们才放入到原数组
				if(bucketElementCounts[k] != 0) {
					//循环该桶即第k个桶(即第k个一维数组), 放入
					for(int l = 0; l < bucketElementCounts[k]; l++) {
						//取出元素放入到arr
						arr[index++] = bucket[k][l];
					}
				}
				//第i+1轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
				bucketElementCounts[k] = 0;
				
			}
			//System.out.println("第"+(i+1)+"轮,对个位的排序处理 arr =" + Arrays.toString(arr));
			
		}
		
		/*
		
		//第1轮(针对每个元素的个位进行排序处理)
		for(int j = 0; j < arr.length; j++) {
			//取出每个元素的个位的值
			int digitOfElement = arr[j] / 1 % 10;
			//放入到对应的桶中
			bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
			bucketElementCounts[digitOfElement]++;
		}
		//按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
		int index = 0;
		//遍历每一桶,并将桶中是数据,放入到原数组
		for(int k = 0; k < bucketElementCounts.length; k++) {
			//如果桶中,有数据,我们才放入到原数组
			if(bucketElementCounts[k] != 0) {
				//循环该桶即第k个桶(即第k个一维数组), 放入
				for(int l = 0; l < bucketElementCounts[k]; l++) {
					//取出元素放入到arr
					arr[index++] = bucket[k][l];
				}
			}
			//第l轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
			bucketElementCounts[k] = 0;
			
		}
		System.out.println("第1轮,对个位的排序处理 arr =" + Arrays.toString(arr));
		
		
		//==========================================
		
		//第2轮(针对每个元素的十位进行排序处理)
		for (int j = 0; j < arr.length; j++) {
			// 取出每个元素的十位的值
			int digitOfElement = arr[j] / 10  % 10; //748 / 10 => 74 % 10 => 4
			// 放入到对应的桶中
			bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
			bucketElementCounts[digitOfElement]++;
		}
		// 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
		index = 0;
		// 遍历每一桶,并将桶中是数据,放入到原数组
		for (int k = 0; k < bucketElementCounts.length; k++) {
			// 如果桶中,有数据,我们才放入到原数组
			if (bucketElementCounts[k] != 0) {
				// 循环该桶即第k个桶(即第k个一维数组), 放入
				for (int l = 0; l < bucketElementCounts[k]; l++) {
					// 取出元素放入到arr
					arr[index++] = bucket[k][l];
				}
			}
			//第2轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
			bucketElementCounts[k] = 0;
		}
		System.out.println("第2轮,对个位的排序处理 arr =" + Arrays.toString(arr));
		
		
		//第3轮(针对每个元素的百位进行排序处理)
		for (int j = 0; j < arr.length; j++) {
			// 取出每个元素的百位的值
			int digitOfElement = arr[j] / 100 % 10; // 748 / 100 => 7 % 10 = 7
			// 放入到对应的桶中
			bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
			bucketElementCounts[digitOfElement]++;
		}
		// 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
		index = 0;
		// 遍历每一桶,并将桶中是数据,放入到原数组
		for (int k = 0; k < bucketElementCounts.length; k++) {
			// 如果桶中,有数据,我们才放入到原数组
			if (bucketElementCounts[k] != 0) {
				// 循环该桶即第k个桶(即第k个一维数组), 放入
				for (int l = 0; l < bucketElementCounts[k]; l++) {
					// 取出元素放入到arr
					arr[index++] = bucket[k][l];
				}
			}
			//第3轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
			bucketElementCounts[k] = 0;
		}
		System.out.println("第3轮,对个位的排序处理 arr =" + Arrays.toString(arr)); */
		
	}
}

总结

在这里插入图片描述
在这里插入图片描述

  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2021-07-14 23:11:55  更:2021-07-14 23:12:07 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/25 16:31:59-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码