在本问题中, 树指的是一个连通且无环的无向图。
输入一个图,该图由一个有着N个节点 (节点值不重复1, 2, ..., N) 的树及一条附加的边构成。附加的边的两个顶点包含在1到N中间,这条附加的边不属于树中已存在的边。
结果图是一个以边组成的二维数组。每一个边的元素是一对[u, v] ,满足 u < v,表示连接顶点u 和v的无向图的边。
返回一条可以删去的边,使得结果图是一个有着N个节点的树。如果有多个答案,则返回二维数组中最后出现的边。答案边 [u, v] 应满足相同的格式 u < v。
示例 1:
输入: [[1,2], [1,3], [2,3]]
输出: [2,3]
解释: 给定的无向图为:
? 1
?/ \
2 - 3
示例 2:
输入: [[1,2], [2,3], [3,4], [1,4], [1,5]]
输出: [1,4]
解释: 给定的无向图为:
5 - 1 - 2
??? |?? |
??? 4 - 3
注意:
??? 输入的二维数组大小在 3 到 1000。
??? 二维数组中的整数在1到N之间,其中N是输入数组的大小。
我们已经重新检查了问题描述及测试用例,明确图是无向 图。对于有向图详见冗余连接II。对于造成任何不便,我们深感歉意。
方法一:并查集
在一棵树中,边的数量比节点的数量少 1。如果一棵树有 N个节点,则这棵树有 N?1条边。这道题中的图在树的基础上多了一条附加的边,因此边的数量也是 N。
树是一个连通且无环的无向图,在树中多了一条附加的边之后就会出现环,因此附加的边即为导致环出现的边。
可以通过并查集寻找附加的边。初始时,每个节点都属于不同的连通分量。遍历每一条边,判断这条边连接的两个顶点是否属于相同的连通分量。
??? 如果两个顶点属于不同的连通分量,则说明在遍历到当前的边之前,这两个顶点之间不连通,因此当前的边不会导致环出现,合并这两个顶点的连通分量。
??? 如果两个顶点属于相同的连通分量,则说明在遍历到当前的边之前,这两个顶点之间已经连通,因此当前的边导致环出现,为附加的边,将当前的边作为答案返回。