IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> 基于内容的推荐算法Word2Vec(物品冷启动) -> 正文阅读

[数据结构与算法]基于内容的推荐算法Word2Vec(物品冷启动)

  • 之前和大家聊过物品画像与用户画像,现在接着说一下实现物品冷启动的一些方法:利用Word2Vec可以计算电影所有标签词之间的关系程度,可用于计算电影之间的相似度。

Word2Vec原理简介

  • word2vec是google在2013年开源的一个NLP(Natural Language Processing自然语言处理) 工具,它的特点是将所有的词向量化,这样词与词之间就可以定量的去度量他们之间的关系,挖掘词之间的联系。

  • one-hot vector(独热编码) VS word vector

    • 用向量来表示词并不是word2vec的首创
    • 最早的词向量是很冗长的,它使用是词向量维度大小为整个词汇表的大小,对于每个具体的词汇表中的词,将对应的位置置为1。
    • 比如下面5个词组成词汇表,词"Queen"的序号为2, 那么它的词向量就是(0,1,0,0,0)同样的道理,词"Woman"的词向量就是(0,0,0,1,0)。
      在这里插入图片描述
  • one-hot vector的问题:

    • 如果词汇表达到万级别甚至更高的话,这样每个词都用万维的向量来表示浪费内存。这样的向量除了一个位置是1,其余位置全部为0,表达效率低(稀疏),需要降低词向量的维度。
    • 难以发现词之间的关系,以及难以捕捉句法(结构)和语义(意思)之间的关系。
    • Dristributed representation可以解决One-hot representation的问题,它的思路是通过训练,将每个词都映射到一个较短的词向量上来。所有的这些词向量就构成了向量空间,进而可以用普通的统计学的方法来研究词与词之间的关系。这个较短的词向量维度一般需要我们在训练时指定。
    • 比如下图我们将词汇表里的词用"Royalty(王位)",“Masculinity(男性气质)”, "Femininity(女性气质)"和"Age"4个维度来表示,King这个词对应的词向量可能是(0.99,0.99,0.05,0.7)。当然在实际情况中,我们并不一定能对词向量的每个维度做一个很好的解释。
      在这里插入图片描述
  • 有了用Dristributed representation表示的较短的词向量,就可以较容易的分析词之间的关系,比如将词的维度降维到2维,用下图的词向量表示我们的词时,发现: K i n g ? ? M a n ? + W o m a n ? = Q u e e n ? ? \vec{King} - \vec{Man} + \vec{Woman} = \vec{Queen}? King ??Man +Woman =Queen ??
    在这里插入图片描述

  • Word Vector(词向量):每个单词被表征为多维的浮点数,每一维的浮点数的数值大小表示了它与另一个单词之间的“距离”,表征的结果就是语义相近的词被映射到相近的集合空间上,好处是这样单词之间就是可以计算的:

animal pet
dog -0.4 0.02
tiger 0.2 0.35

Word2Vec算法模型

CBOW

  • 介绍:CBOW把一个词从词窗剔除。在CBOW下给定n词围绕着词w,word2vec预测一个句子中其中一个缺漏的词c,即以概率 p ( c ∣ w ) p(c|w) p(cw)来表示。相反地,Skip-gram给定词窗中的文本,预测当前的词 p ( w ∣ c ) p(w|c) p(wc)

  • 原理:拥有差不多上下文的两个单词的意思往往是相近的

  • Continuous Bag-of-Words(CBOW) 连续词袋向量

    • 功能:通过上下文预测当前词出现的概率

    • 原理分析

      假设文本如下:“the capital of china is Nanjing.

      想象有个滑动窗口,中间的词是关键词,两边为相等长度的文本来帮助分析。文本的长度为6,就得到了6个one-hot向量,作为神经网络的输入向量,训练目标是:最大化在给定前后文本情况下输出正确关键词的概率,比如给定(“The”,“Capital”,“of”,"is,“Nanjing”)的情况下,要最大化输出"China"的概率,用公式表示就是

      P(“China”|(“capital”,“of”,“is”,“Nanjing”))

    • 特性

      • hidden layer只是将权重求和,传递到下一层,是线性的。

Continuous Skip-gram

  • 功能:根据当前词预测上下文
  • 原理分析
    • 和CBOW相反,则我们要求的概率就变为P(Context(w)|w)

Word2Vec相关代码实现

from gensim.models import TfidfModel

import pandas as pd
import numpy as np


def get_movie_dataset():
    # 加载基于所有电影的标签
    # all-tags.csv来自ml-latest数据集中
    # 由于ml-latest-small中标签数据太多,因此借助其来扩充
    _tags = pd.read_csv("ml-latest-small/all-tags.csv", usecols=range(1, 3)).dropna()
    tags = _tags.groupby("movieId").agg(list)

    # 加载电影列表数据集
    movies = pd.read_csv("ml-latest-small/movies.csv", index_col="movieId")
    # 将类别词分开
    movies["genres"] = movies["genres"].apply(lambda x: x.split("|"))
    # 为每部电影匹配对应的标签数据,如果没有将会是NAN
    movies_index = set(movies.index) & set(tags.index)
    new_tags = tags.loc[list(movies_index)]
    ret = movies.join(new_tags)

    # 构建电影数据集,包含电影Id、电影名称、类别、标签四个字段
    # 如果电影没有标签数据,那么就替换为空列表
    movie_dataset = pd.DataFrame(
        map(
            lambda x: (x[0], x[1], x[2], x[2]+x[3]) if x[3] is not np.nan else (x[0], x[1], x[2], []), ret.itertuples())
        , columns=["movieId", "title", "genres","tags"]
    )

    movie_dataset.set_index("movieId", inplace=True)
    return movie_dataset


def create_movie_profile(movie_dataset):
    '''
    使用tfidf,分析提取topn关键词
    :param movie_dataset:
    :return:
    '''
    dataset = movie_dataset["tags"].values

    from gensim.corpora import Dictionary
    dct = Dictionary(dataset)
    corpus = [dct.doc2bow(line) for line in dataset]

    model = TfidfModel(corpus)

    _movie_profile = []
    for i, data in enumerate(movie_dataset.itertuples()):
        mid = data[0]
        title = data[1]
        genres = data[2]
        vector = model[corpus[i]]
        movie_tags = sorted(vector, key=lambda x: x[1], reverse=True)[:30]
        topN_tags_weights = dict(map(lambda x: (dct[x[0]], x[1]), movie_tags))
        # 将类别词的添加进去,并设置权重值为1.0
        for g in genres:
            topN_tags_weights[g] = 1.0
        topN_tags = [i[0] for i in topN_tags_weights.items()]
        _movie_profile.append((mid, title, topN_tags, topN_tags_weights))

    movie_profile = pd.DataFrame(_movie_profile, columns=["movieId", "title", "profile", "weights"])
    movie_profile.set_index("movieId", inplace=True)
    return movie_profile

movie_dataset = get_movie_dataset()
movie_profile = create_movie_profile(movie_dataset)

import gensim, logging

logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)

sentences = list(movie_profile["profile"].values)

model = gensim.models.Word2Vec(sentences, window=3, min_count=1, iter=20)

while True:
    words = input("words: ")  # action
    ret = model.wv.most_similar(positive=[words], topn=10)
    print(ret)
    
  • Doc2Vec是建立在Word2Vec上的,用于直接计算以文档为单位的文档向量,这里我们将一部电影的所有标签词,作为整个文档,这样可以计算出每部电影的向量,通过计算向量之间的距离,来判断用于计算电影之间的相似程度。这样可以解决物品冷启动问题。
  • 相关代码如下
#前面get_movie_dataset,create_movie_profile与word2vec基本相同,后面如下
import gensim, logging
from gensim.models.doc2vec import Doc2Vec, TaggedDocument

logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)

documents = [TaggedDocument(words, [movie_id]) for movie_id, words in movie_profile["profile"].iteritems()]

# 训练模型并保存
model = Doc2Vec(documents, vector_size=100, window=3, min_count=1, workers=4, epochs=20)
from gensim.test.utils import get_tmpfile
fname = get_tmpfile("my_doc2vec_model")
model.save(fname)


words = movie_profile["profile"].loc[6]
print(words)
inferred_vector = model.infer_vector(words)
sims = model.docvecs.most_similar([inferred_vector], topn=10)
print(sims)
  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2021-07-15 16:28:07  更:2021-07-15 16:28:15 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年5日历 -2024/5/7 13:12:05-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码