4.堆——可以看成是完全二叉树,因此可以用静态数组进行存储,并可根据小标进行操作; 堆排序——将堆分为小根堆/大根堆 (小根堆:父节点的值比子节点的值小;大根堆:父节点的值比子结点的值大)
题目如下: 输入一个长度为 n 的整数数列,从小到大输出前 m 小的数。
输入格式 第一行包含整数 n 和 m。
第二行包含 n 个整数,表示整数数列。
输出格式 共一行,包含 m 个整数,表示整数数列中前 m 小的数。
数据范围 1≤m≤n≤105, 1≤数列中元素≤109 输入样例: 5 3 4 5 1 3 2 输出样例: 1 2 3
#include<cstdio>
#include<algorithm>
using namespace std;
const int N = 1e5 + 10;
int h[N], cnt;
void down(int u)
{
int t = u;
if(u * 2 <= cnt && h[u * 2] < h[t]) t = u * 2;
if(u * 2 + 1 <=cnt && h[u * 2 + 1] < h[t]) t = u * 2 + 1;
if(u != t)
{
swap(h[t], h[u]);
down(t);
}
}
int main()
{
int n, m;
scanf("%d%d", &n, &m);
for(int i = 1; i <= n ; i ++) scanf("%d", &h[i]);
cnt = n;
for(int i = n / 2; i ; i --) down(i);
while(m --)
{
printf("%d ", h[1]);
h[1] = h[cnt --];
down(1);
}
return 0;
}
如何手写一个堆呢?
1.插入一个元素 2.求集合中最小值 3.删去最小值 4.删去任意一个元素 5.修改任意一个元素
1.插入一个元素 x
2.求集合中最小值
3.删去最小值
4.删去任意一个元素
5.修改任意一个元素
|