You are given an integer array nums. You want to maximize the number of points you get by performing the following operation any number of times:
Pick any nums[i] and delete it to earn nums[i] points. Afterwards, you must delete every element equal to nums[i] - 1 and every element equal to nums[i] + 1. Return the maximum number of points you can earn by applying the above operation some number of times.
这道题是我做动态规划碰到的第一个下马威,没有识别出这是一道动态规划题。实际上,这题跟“打家劫舍”那道题的核心思想是一模一样的。重点是如何理解获得一个数后,就要删除和它相邻的数。其实,可以将这句话转述成:不能取两个相邻的数。这样就很容易地解决了本题。
状态转移方程 dp[i] = max(dp[i-2] + dp[i], dp[i-1]) 边界条件 dp[0] = dp[0], dp[1] = max(dp[0], dp[1])
class Solution {
public:
int deleteAndEarn(vector<int>& nums) {
int nums_top = nums.size();
if(nums_top == 0)
return 0;
else if(nums_top == 1)
return nums[0];
int dp[20005] = {0};
int maxn = -1;
for(int i = 0; i < nums_top; i++)
{
dp[nums[i]] += nums[i];
if(nums[i] > maxn)
maxn = nums[i];
}
dp[1] = max(dp[0], dp[1]);
for(int i = 2; i <= maxn; i++)
dp[i] = max(dp[i-2]+dp[i], dp[i-1]);
return dp[maxn];
}
};
|