问题描述:
在一个8x8(或者nxn)的棋盘上,一个骑兵(马)走日(对角)能否遍历整个棋盘。
http://en.wikipedia.org/wiki/Knight%27s_tour
Warnsdorff's algorithm: Heruistic?剪枝,排除不需要的回溯路
规则如下两条:
1)我们可以从棋盘上任意一处开始移动
2)我们每次移动到最近,最狭隘(周围没遍历过点最少)的点(be more greedy!)
算法的基本结构:
1.?任意选取点P为棋盘上起点
2.?标记P为1
3.?重复以下动作从2-64:
? ? ? ? 1. S?作为P能移动到的点的set
? ? ? ? 2.?标记P?为S里最小accesibility
? ? ? ? 3.?标记P?为现在的移动次数
4.?返回标记的数组
import java.util.*;
import java.util.concurrent.ThreadLocalRandom;
public class knight_tour {
public static final int N = 8;
//cx,cy记录可以移动的位置 8 种
public static final int cx[] = {1, 1, 2, 2, -1, -1, -2, -2};
public static final int cy[] = {2, -2, 1, -1, 2, -2, 1, -1};
class Cell {
int x;
int y;
public Cell(int x, int y)
{
this.x = x;
this.y = y;
}
}
//判断是否在棋盘内
boolean limits(int x, int y) {
return ((x >= 0 && y >= 0) && (x < N && y < N));
}
//判断是否能走
boolean isempty(int a[], int x, int y){
return (limits(x, y)) && (a[y * N + x] < 0);
}
//找到每个点的degree 方便选择剪枝
int getDegree(int a[], int x, int y) {
int count = 0;
for (int i = 0; i < N; ++i)
if (isempty(a, (x + cx[i]),(y + cy[i])))
count++;
return count;
}
// 选择下一个位置
Cell nextMove(int a[], Cell cell)
{
int min_deg_idx = -1, c,
min_deg = (N + 1), nx, ny;
//随机选一个开始点
int start = ThreadLocalRandom.current().nextInt(1000) % N;
for (int count = 0; count < N; ++count) {
int i = (start + count) % N;
nx = cell.x + cx[i];
ny = cell.y + cy[i];
if ((isempty(a, nx, ny)) && (c = getDegree(a, nx, ny)) < min_deg) {
min_deg_idx = i;
min_deg = c;
}
}
if (min_deg_idx == -1)
return null;
nx = cell.x + cx[min_deg_idx];
ny = cell.y + cy[min_deg_idx];
a[ny * N + nx] = a[(cell.y) * N + (cell.x)] + 1;
cell.x = nx;
cell.y = ny;
return cell;
}
void print(int a[]) {
for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j)
System.out.printf("%d\t", a[j * N + i]);
System.out.printf("\n");
}
}
boolean neighbour(int x, int y, int xx, int yy) {
for (int i = 0; i < N; ++i)
if (((x + cx[i]) == xx) &&((y + cy[i]) == yy))
return true;
return false;
}
boolean findClosedTour() {
int a[] = new int[N * N];
for (int i = 0; i < N * N; ++i)
a[i] = -1;
int sx = 3;
int sy = 2;
Cell cell = new Cell(sx, sy);
a[cell.y * N + cell.x] = 1;
Cell ret = null;
for (int i = 0; i < N * N - 1; ++i)
{
ret = nextMove(a, cell);
if (ret == null)
return false;
}
if (!neighbour(ret.x, ret.y, sx, sy))
return false;
print(a);
return true;
}
public static void main(String[] args)
{
while (!new knight_tour().findClosedTour())
{
;
}
}
}
|