| 简单线性回归简单线性回归包含一个自变量(x)和一个因变量(y),如果包含两个以上的自变量,则称作多元回归分析(multiple regression),被用来描述因变量(y)和自变量(X)以及偏差(error)之间关系的方程叫做回归模型 
  公式:∑
            
            
             
              m
             
             
              =
             
             
              0
             
            
            
             m
            
           
           
            (
           
           
            
             
              y
             
             
              
               (
              
              
               i
              
              
               )
              
             
            
            
             ?
            
            
             a
            
            
             ?
            
            
             
              x
             
             
              
               (
              
              
               i
              
              
               )
              
             
            
            
             ?
            
            
             b
            
            
             
              )
             
             
              2
             
            
           
           
            ,一元线性回归算法公式
           
          
          
            \sum_{m=0}^{m} ({y^{(i)} -a*x^{(i)}-b)^2} \text {,一元线性回归算法公式} 
          
         
        m=0∑m?(y(i)?a?x(i)?b)2,一元线性回归算法公式
原理:找到a和b使得上述公式的值尽可能的小,经过最小二乘法求解可以计算出a值是:a
           
           
            =
           
           
            
             
              
               ∑
              
              
               
                m
               
               
                =
               
               
                0
               
              
              
               m
              
             
             
              (
             
             
              
               x
              
              
               
                (
               
               
                i
               
               
                )
               
              
             
             
              ?
             
             
              
               x
              
              
                ̄
              
             
             
              )
             
             
              ?
             
             
              (
             
             
              
               y
              
              
               
                (
               
               
                i
               
               
                )
               
              
             
             
              ?
             
             
              
               y
              
              
               ˉ
              
             
             
              )
             
            
            
             
              
               ∑
              
              
               
                m
               
               
                =
               
               
                0
               
              
              
               m
              
             
             
              (
             
             
              
               x
              
              
               
                (
               
               
                i
               
               
                )
               
              
             
             
              ?
             
             
              
               x
              
              
               ˉ
              
             
             
              
               )
              
              
               2
              
             
            
           
           
            ,a的值
           
          
          
            a=\frac{ \sum_{m=0}^{m}(x^{(i)}-\overline{x})*(y^{(i)}-\bar{y })}{ \sum_{m=0}^{m}(x^{(i)}-\bar{x })^2} \text {,a的值} 
          
         
        a=∑m=0m?(x(i)?xˉ)2∑m=0m?(x(i)?x)?(y(i)?yˉ?)?,a的值
 b
           
           
            =
           
           
            
             y
            
            
             ˉ
            
           
           
            ?
           
           
            a
           
           
            ?
           
           
            
             x
            
            
             ˉ
            
           
           
            ,b的值
           
          
          
            b=\bar{y }-a*\bar{x }\text {,b的值} 
          
         
        b=yˉ??a?xˉ,b的值
 使用代码实现如下:这种方式实现的代码时间复杂度很大O(n^3)不建议使用
 class SimpleLinearRegression1:
    def __init__(self):
        self.a_ = None
        self.b_ = None
    def fit(self, x_train, y_train):
        """根据训练数据集x_train,y_train训练Simple Linear Regression模型"""
        if x_train.ndim != 1:
            raise Exception("简单回归的维度只能是一维")
        if len(x_train) != len(y_train):
            raise Exception("x_train的行数需要和y_train的行数相同")
        """计算训练集平均值"""
        x_mean = np.mean(x_train)
        """计算训练集平均值"""
        y_mean = np.mean(y_train)
        num = 0.0  
        d = 0.0  
        """循环得出x,y的值"""
        for x, y in zip(x_train, y_train):
            """利用最小二乘法计算出a、b的值"""
            num += (x - x_mean) * (y - y_mean)
            d += (x - x_mean) ** 2
        self.a_ = num / d
        self.b_ = y_mean - self.a_ * x_mean
        return self
    def predict(self, x_predict):
        """x_predict是待预测的数据集,输入这个x_predict会得到一个预测值"""
        if x_predict.ndim != 1:
            raise Exception("简单回归的维度只能是一维")
        if self.a_ is None and self.b_ is None:
            raise Exception("预测之前需要先拟合")
        res = []
        for x in x_predict:
            res.append(self._predict(x))
            """封装为np.array格式数据"""
        return np.array(res)
    def _predict(self, x_single):
        """转化为函数y=a*x+b"""
        return self.a_ * x_single + self.b_
 第二方式实现a
         
         
          =
         
         
          
           
            (
           
           
            
             x
            
            
             
              (
             
             
              i
             
             
              )
             
            
           
           
            ?
           
           
            
             x
            
            
              ̄
            
           
           
            )
           
           
            ?
           
           
            (
           
           
            
             y
            
            
             
              (
             
             
              i
             
             
              )
             
            
           
           
            ?
           
           
            
             y
            
            
             ˉ
            
           
           
            )
           
          
          
           
            (
           
           
            
             x
            
            
             
              (
             
             
              i
             
             
              )
             
            
           
           
            ?
           
           
            
             x
            
            
             ˉ
            
           
           
            
             )
            
            
             2
            
           
          
         
         
          ,a的值
         
        
        
          a=\frac{(x^{(i)}-\overline{x})\cdot(y^{(i)}-\bar{y })}{ (x^{(i)}-\bar{x })^2} \text {,a的值} 
        
       
      a=(x(i)?xˉ)2(x(i)?x)?(y(i)?yˉ?)?,a的值
 b
         
         
          =
         
         
          
           y
          
          
           ˉ
          
         
         
          ?
         
         
          a
         
         
          ?
         
         
          
           x
          
          
           ˉ
          
         
         
          ,b的值
         
        
        
          b=\bar{y }-a*\bar{x }\text {,b的值} 
        
       
      b=yˉ??a?xˉ,b的值
 class SimpleLinearRegression2:
    def __init__(self):
        self.a_ = None
        self.b_ = None
    def fit(self, x_train, y_train):
        """根据训练数据集x_train,y_train训练Simple Linear Regression模型"""
        if x_train.ndim != 1:
            raise Exception("简单回归的维度只能是一维")
        if len(x_train) != len(y_train):
            raise Exception("x_train的行数需要和y_train的行数相同")
        x_mean = np.mean(x_train)
        y_mean = np.mean(y_train)
        num = 0.0  
        d = 0.0  
        num = (x_train - x_mean).dot(y_train - y_mean)
        d = (x_train - x_mean).dot(x_train - x_mean)
        self.a_ = num / d
        self.b_ = y_mean - self.a_ * x_mean
        return self
    def predict(self, x_predict):
        """x_predict是待预测的数据集,输入这个x_predict会得到一个预测值"""
        if x_predict.ndim != 1:
            raise Exception("简单回归的维度只能是一维")
        if self.a_ is None and self.b_ is None:
            raise Exception("预测之前需要先拟合")
        res = []
        for x in x_predict:
            res.append(self._predict(x))
        return np.array(res)
    def score(self, x_test, y_test):
        y_predict = self.predict(x_test)
        return r2_score(y_test, y_predict)
    def _predict(self, x_single):
        return self.a_ * x_single + self.b_
 评价一盒回归算法的好坏可以利用MSE(均方误差)、RMSE(均方根误差)、MAE(平均绝对误差)、R2(决定系数)实现代码如下
 def mean_squared_error(y_true, y_predict):
    if len(y_true) != len(y_predict):
        raise Exception("y_ture的长度应该和y_predict相同")
    return np.sum((y_true - y_predict) ** 2) / len(y_true)
def root_mean_squared_error(y_true, y_predict):
    """计算y_true和y_predict之间的RMSE"""
    return sqrt(mean_squared_error(y_true, y_predict))
def mean_absolute_error(y_true, y_predict):
    """计算y_true和y_predict之间的MAE"""
    return np.sum(np.absolute(y_true - y_predict)) / len(y_true)
def r2_score(y_true, y_predict):
    return 1 - mean_squared_error(y_true, y_predict) / np.var(y_true)
 多元线性回归:公式y
         
         
          =
         
         
          
           θ
          
          
           0
          
         
         
          +
         
         
          
           θ
          
          
           1
          
         
         
          
           x
          
          
           1
          
         
         
          +
         
         
          
           θ
          
          
           2
          
         
         
          
           x
          
          
           2
          
         
         
          +
         
         
          
           θ
          
          
           3
          
         
         
          
           x
          
          
           3
          
         
         
          +
         
         
          .
         
         
          .
         
         
          .
         
         
          .
         
         
          .
         
         
          .
         
         
          +
         
         
          
           θ
          
          
           n
          
         
         
          
           x
          
          
           n
          
         
         
          ,y的值
         
        
        
          y=\theta_{0}+\theta_{1}x_{1}+\theta_{2}x_{2}+\theta_{3}x_{3}+......+\theta_{n}x_{n}\text {,y的值} 
        
       
      y=θ0?+θ1?x1?+θ2?x2?+θ3?x3?+......+θn?xn?,y的值
分解这个函数可以得到:y
           
           
            ^
           
          
          
           
            (
           
           
            i
           
           
            )
           
          
         
         
          =
         
         
          
           x
          
          
           0
          
         
         
          +
         
         
          
           x
          
          
           1
          
         
         
          +
         
         
          
           x
          
          
           2
          
         
         
          +
         
         
          
           x
          
          
           3
          
         
         
          +
         
         
          .
         
         
          .
         
         
          .
         
         
          .
         
         
          .
         
         
          .
         
         
          +
         
         
          
           x
          
          
           n
          
         
        
        
          \widehat{y}^{(i)}=x_{0}+x_{1}+x_{2}+x_{3}+......+x_{n} 
        
       
      y
              
               
              ?(i)=x0?+x1?+x2?+x3?+......+xn?
 θ
          
          
           =
          
         
         
          (
         
         
          
           θ
          
          
           0
          
         
         
          +
         
         
          
           θ
          
          
           1
          
         
         
          +
         
         
          
           θ
          
          
           2
          
         
         
          +
         
         
          
           θ
          
          
           3
          
         
         
          +
         
         
          .
         
         
          .
         
         
          .
         
         
          .
         
         
          .
         
         
          .
         
         
          +
         
         
          
           θ
          
          
           n
          
         
         
          
           )
          
          
           T
          
         
        
        
         \theta_=(\theta_{0}+\theta_{1}+\theta_{2}+\theta_{3}+......+\theta_{n}) ^{T}
        
       
      θ=?(θ0?+θ1?+θ2?+θ3?+......+θn?)T根据向量化运算可以得到
      
       
        
         
          
           θ
          
          
           =
          
         
         
          (
         
         
          
           x
          
          
           b
          
         
         
          ?
         
         
          
           x
          
          
           b
          
         
         
          
           )
          
          
           T
          
         
         
          ?
         
         
          
           x
          
          
           b
          
          
           T
          
         
         
          ?
         
         
          y
         
        
        
         \theta_=(x_{b}\cdot x_{b})^{T}\cdot x_{b}^{T}\cdot y
        
       
      θ=?(xb??xb?)T?xbT??y 函数的截距就是
      
       
        
         
          
           θ
          
          
           0
          
         
        
        
         \theta_{0}
        
       
      θ0?系数是
      
       
        
         
          
           θ
          
          
           1
          
         
         
          .
         
         
          .
         
         
          .
         
         
          .
         
         
          .
         
         
          .
         
         
          
           θ
          
          
           n
          
         
        
        
         \theta_{1}......\theta_{n}
        
       
      θ1?......θn?
 y值,就是数学函数输出的值是y
         
         
          =
         
         
          
           x
          
          
           b
          
         
         
          ?
         
         
          
           θ
          
          
         
        
        
         y=x_{b}\cdot \theta_{}
        
       
      y=xb??θ? 
      
       
        
         
          
           θ
          
          
           =
          
         
         
          (
         
         
          
           x
          
          
           b
          
         
         
          ?
         
         
          
           x
          
          
           b
          
         
         
          
           )
          
          
           T
          
         
         
          ?
         
         
          
           x
          
          
           b
          
          
           T
          
         
         
          ?
         
         
          y
         
        
        
         \theta_=(x_{b}\cdot x_{b})^{T}\cdot x_{b}^{T}\cdot y
        
       
      θ=?(xb??xb?)T?xbT??y
 np.hstack():在水平方向上平铺
 X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
多元线性回归代码如下:
 
import numpy as np
from metrics import r2_score
class LinearRegression:
    def __init__(self):
        self.coef_ = None
        self.intercept_ = None
        self.theta_ = None
    def fit_normal(self, X_train, y_train):
        """根据训练数据集X_train, y_train训练Linear Regression模型"""
        if X_train.shape[0] != y_train.shape[0]:
            raise Exception("X_train的行数需要和y_train的行数相同")
        X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
        self.theta_ = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y_train)
        self.intercept_ = self.theta_[0]
        self.coef_ = self.theta_[1:]
        return self
    def predict(self, X_predict):
        """给定待预测数据集X_predict,返回表示X_predict的结果向量"""
        assert self.intercept_ is not None and self.coef_ is not None, \
            "must fit before predict!"
        assert X_predict.shape[1] == len(self.coef_), \
            "the feature number of X_predict must be equal to X_train"
        X_b = np.hstack([np.ones((len(X_predict), 1)), X_predict])
        return X_b.dot(self.theta_)
    def score(self, X_test, y_test):
        """根据测试数据集 X_test 和 y_test 确定当前模型的准确度"""
        y_predict = self.predict(X_test)
        return r2_score(y_test, y_predict)
    def __repr__(self):
        return "LinearRegression()"
 |