? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?二叉树
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?个人博客:www.xiaobeigua.icu?
1.1树的基本定义
树是我们计算机中非常重要的一种数据结构,同时使用树这种数据结构,可以描述现实生活中的很多事物,例如家 谱、单位的组织架构、等等。
树是由n(n>=1)个有限结点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就 是说它是根朝上,而叶朝下的。
? ? ? ? ? ??
?
树具有以下特点:
????????1.每个结点有零个或多个子结点;
????????2.没有父结点的结点为根结点;
????????3.每一个非根结点只有一个父结点;
????????4.每个结点及其后代结点整体上可以看做是一棵树,称为当前结点的父结点的一个子树;
?1.2 树的相关术语
?结点的度:
????????一个结点含有的子树的个数称为该结点的度;
叶结点:
????????度为0的结点称为叶结点,也可以叫做终端结点
分支结点:
????????度不为0的结点称为分支结点,也可以叫做非终端结点
结点的层次:
????????从根结点开始,根结点的层次为1,根的直接后继层次为2,以此类推
结点的层序编号:
????????将树中的结点,按照从上层到下层,同层从左到右的次序排成一个线性序列,把他们编成连续的自然数。
树的度:
????????树中所有结点的度的最大值
树的高度(深度):
???????? 树中结点的最大层次
森林:
???????? m(m>=0)个互不相交的树的集合,将一颗非空树的根结点删去,树就变成一个森林;给森林增加一个统一的根 结点,森林就变成一棵树
? ? ? ? ? ? ? ? ??
去掉了根结点:
? ? ? ? ? ? ? ? ? ? ? ??
?孩子结点:
????????一个结点的直接后继结点称为该结点的孩子结点
双亲结点(父结点):
???????? 一个结点的直接前驱称为该结点的双亲结点
兄弟结点:
????????同一双亲结点的孩子结点间互称兄弟结点
1.3 二叉树的基本定义?
?二叉树就是度不超过2的树(每个结点最多有两个子结点)
? ? ? ? ? ? ? ? ? ? ? ? ??
?满二叉树:
一个二叉树,如果每一个层的结点树都达到最大值,则这个二叉树就是满二叉树? ??
? ? ? ? ? ? ? ? ? ? ? ?
??
?完全二叉树:
叶节点只能出现在最下层和次下层,并且最下面一层的结点都集中在该层最左边的若干位置的二叉树
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
1.4 二叉查找树的创建?
?1.4.1二叉树的结点类
根据对图的观察,我们发现二叉树其实就是由一个一个的结点及其之间的关系组成的,按照面向对象的思想,我们 设计一个结点类来描述结点这个事物。
结点类API设计:
?代码实现:
private class Node<Key,Value>{
//存储键
public Key key;
//存储值
private Value value;
//记录左子结点
public Node left;
//记录右子结点
public Node right;
public Node(Key key, Value value, Node left, Node right) {
this.key = key;
this.value = value;
this.left = left;
this.right = right;
}
}
1.4.2 二叉查找树API设计
1.4.3 二叉查找树实现
插入方法put实现思想:
1.如果当前树中没有任何一个结点,则直接把新结点当做根结点使用
2.如果当前树不为空,则从根结点开始:
????????2.1如果新结点的key小于当前结点的key,则继续找当前结点的左子结点;
????????2.2如果新结点的key大于当前结点的key,则继续找当前结点的右子结点;
????????2.3如果新结点的key等于当前结点的key,则树中已经存在这样的结点,替换该结点的value值即可。
图解:
?
??
查询方法get实现思想:
从根节点开始:
1.如果要查询的key小于当前结点的key,则继续找当前结点的左子结点;
2.如果要查询的key大于当前结点的key,则继续找当前结点的右子结点;
3.如果要查询的key等于当前结点的key,则树中返回当前结点的value。
?删除方法delete实现思想:
1.找到被删除结点;
2.找到被删除结点右子树中的最小结点minNode
3.删除右子树中的最小结点
4.让被删除结点的左子树称为最小结点minNode的左子树,让被删除结点的右子树称为最小结点minNode的右子树
5.让被删除结点的父节点指向最小结点minNode
? ? ? ? ? ? ? ??
? ? ? ? ? ? ? ??
? ? ? ? ? ? ? ??
??
?代码:
//二叉树代码
public class BinaryTree<Key extends Comparable<Key>, Value> {
//记录根结点
private Node root;
//记录树中元素的个数
private int N;
//获取树中元素的个数
public int size() {
return N;
}
//向树中添加元素key-value
public void put(Key key, Value value) {
root = put(root, key, value);
}
//向指定的树x中添加key-value,并返回添加元素后新的树
private Node put(Node x, Key key, Value value) {
if (x == null) {
//个数+1
N++;
return new Node(key, value, null, null);
}
int cmp = key.compareTo(x.key);
if (cmp > 0) {
//新结点的key大于当前结点的key,继续找当前结点的右子结点
x.right = put(x.right, key, value);
} else if (cmp < 0) {
//新结点的key小于当前结点的key,继续找当前结点的左子结点
x.left = put(x.left, key, value);
} else {
//新结点的key等于当前结点的key,把当前结点的value进行替换
x.value = value;
}
return x;
}
//查询树中指定key对应的value
public Value get(Key key) {
return get(root, key);
}
//从指定的树x中,查找key对应的值
public Value get(Node x, Key key) {
if (x == null) {
return null;
}
int cmp = key.compareTo(x.key);
if (cmp > 0) {
//如果要查询的key大于当前结点的key,则继续找当前结点的右子结点;
return get(x.right, key);
} else if (cmp < 0) {
//如果要查询的key小于当前结点的key,则继续找当前结点的左子结点;
return get(x.left, key);
} else {
//如果要查询的key等于当前结点的key,则树中返回当前结点的value。
return x.value;
}
}
//删除树中key对应的value
public void delete(Key key) {
root = delete(root, key);
}
//删除指定树x中的key对应的value,并返回删除后的新树
public Node delete(Node x, Key key) {
if (x == null) {
return null;
}
int cmp = key.compareTo(x.key);
if (cmp > 0) {
//新结点的key大于当前结点的key,继续找当前结点的右子结点
x.right = delete(x.right, key);
} else if (cmp < 0) {
//新结点的key小于当前结点的key,继续找当前结点的左子结点
x.left = delete(x.left, key);
} else {
//新结点的key等于当前结点的key,当前x就是要删除的结点
//1.如果当前结点的右子树不存在,则直接返回当前结点的左子结点
if (x.right == null) {
return x.left;
}
//2.如果当前结点的左子树不存在,则直接返回当前结点的右子结点
if (x.left == null) {
return x.right;
}
//3.当前结点的左右子树都存在
//3.1找到右子树中最小的结点
Node minNode = x.right;
while (minNode.left != null) {
minNode = minNode.left;
}
//3.2删除右子树中最小的结点
Node n = x.right;
while (n.left != null) {
if (n.left.left == null) {
n.left = null;
} else {
n = n.left;
}
}
//3.3让被删除结点的左子树称为最小结点minNode的左子树,让被删除结点的右子树称为最小结点minNode的右子树
minNode.left = x.left;
minNode.right = x.right;
//3.4让被删除结点的父节点指向最小结点minNode
x = minNode;
//个数-1
N--;
}
return x;
}
//节点类
private class Node {
//存储键
public Key key;
//存储值
private Value value;
//记录左子结点
public Node left;
//记录右子结点
public Node right;
public Node(Key key, Value value, Node left, Node right) {
this.key = key;
this.value = value;
this.left = left;
this.right = right;
}
}
}
?测试代码:
//测试代码
public class Test {
public static void main(String[] args) throws Exception {
BinaryTree<Integer, String> bt = new BinaryTree<>();
bt.put(4, "二哈");
bt.put(1, "张三");
bt.put(3, "李四");
bt.put(5, "王五");
System.out.println(bt.size());
bt.put(1,"老三");
System.out.println(bt.get(1));
System.out.println(bt.size());
bt.delete(1);
System.out.println(bt.size());
}
}
1.5 二叉树的基础遍历
很多情况下,我们可能需要像遍历数组数组一样,遍历树,从而拿出树中存储的每一个元素,由于树状结构和线性 结构不一样,它没有办法从头开始依次向后遍历,所以存在如何遍历,也就是按照什么样的搜索路径进行遍历的问 题。
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??
我们把树简单的画作上图中的样子,由一个根节点、一个左子树、一个右子树组成,那么按照根节点什么时候被访 问,我们可以把二叉树的遍历分为以下三种方式:
1.前序遍历:
????????先访问根结点,然后再访问左子树,最后访问右子树
2.中序遍历:
????????先访问左子树,中间访问根节点,最后访问右子树
3.后序遍历:
????????先访问左子树,再访问右子树,最后访问根节点 如果我们分别对下面的树使用三种遍历方式进行遍历,得到的结果如下:?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ?
1.5.1 前序遍历
我们在4.4中创建的树上,添加前序遍历的API:
public Queue preErgodic():使用前序遍历,获取整个树中的所有键
private void preErgodic(Node x,Queue keys):使用前序遍历,把指定树x中的所有键放入到keys队列中
实现过程中,我们通过前序遍历,把,把每个结点的键取出,放入到队列中返回即可。 ?
实现步骤:
1.把当前结点的key放入到队列中;
2.找到当前结点的左子树,如果不为空,递归遍历左子树
3.找到当前结点的右子树,如果不为空,递归遍历右子树
代码:?
//使用前序遍历,获取整个树中的所有键
public Queue<Key> preErgodic(){
Queue<Key> keys = new Queue<>();
preErgodic(root,keys);
return keys;
}
//使用前序遍历,把指定树x中的所有键放入到keys队列中
private void preErgodic(Node x,Queue<Key> keys){
if (x==null){
return;
}
//1.把当前结点的key放入到队列中;
keys.enqueue(x.key);
//2.找到当前结点的左子树,如果不为空,递归遍历左子树
if (x.left!=null){
preErgodic(x.left,keys);
}
//3.找到当前结点的右子树,如果不为空,递归遍历右子树
if (x.right!=null){
preErgodic(x.right,keys);
}
}
测试代码:
//测试代码
public class Test {
public static void main(String[] args) throws Exception {
BinaryTree<String, String> bt = new BinaryTree<>();
bt.put("E", "5");
bt.put("B", "2");
bt.put("G", "7");
bt.put("A", "1");
bt.put("D", "4");
bt.put("F", "6");
bt.put("H", "8");
bt.put("C", "3");
Queue<String> queue = bt.preErgodic();
for (String key : queue) {
System.out.println(key+"="+bt.get(key));
}
}
}
1.5.2 中序遍历
我们在4.4中创建的树上,添加前序遍历的API:
public Queue<Key> midErgodic():使用中序遍历,获取整个树中的所有键
private void midErgodic(Node x,Queue<Key> keys):使用中序遍历,把指定树x中的所有键放入到keys队列中
实现步骤:
1.找到当前结点的左子树,如果不为空,递归遍历左子树
2.把当前结点的key放入到队列中
3.找到当前结点的右子树,如果不为空,递归遍历右子树
代码:
//使用中序遍历,获取整个树中的所有键
public Queue<Key> midErgodic(){
Queue<Key> keys = new Queue<>();
midErgodic(root,keys);
return keys;
}
//使用中序遍历,把指定树x中的所有键放入到keys队列中
private void midErgodic(Node x,Queue<Key> keys){
if (x==null){
return;
}
//1.找到当前结点的左子树,如果不为空,递归遍历左子树
if (x.left!=null){
midErgodic(x.left,keys);
}
//2.把当前结点的key放入到队列中;
keys.enqueue(x.key);
//3.找到当前结点的右子树,如果不为空,递归遍历右子树
if (x.right!=null){
midErgodic(x.right,keys);
}
}
测试代码:
//测试代码
public class Test {
public static void main(String[] args) throws Exception {
BinaryTree<String, String> bt = new BinaryTree<>();
bt.put("E", "5");
bt.put("B", "2");
bt.put("G", "7");
bt.put("A", "1");
bt.put("D", "4");
bt.put("F", "6");
bt.put("H", "8");
bt.put("C", "3");
Queue<String> queue = bt.midErgodic();
for (String key : queue) {
System.out.println(key+"="+bt.get(key));
}
}
}
1.5.3 后序遍历
我们在4.4中创建的树上,添加前序遍历的API:
public Queue afterErgodic():使用后序遍历,获取整个树中的所有键
private void afterErgodic(Node x,Queue keys):使用后序遍历,把指定树x中的所有键放入到keys队列中
实现步骤:
1.找到当前结点的左子树,如果不为空,递归遍历左子树
2.找到当前结点的右子树,如果不为空,递归遍历右子树
3.把当前结点的key放入到队列中;
代码:
//使用后序遍历,获取整个树中的所有键
public Queue<Key> afterErgodic(){
Queue<Key> keys = new Queue<>();
afterErgodic(root,keys);
return keys;
}
//使用后序遍历,把指定树x中的所有键放入到keys队列中
private void afterErgodic(Node x,Queue<Key> keys){
if (x==null){
return;
}
//1.找到当前结点的左子树,如果不为空,递归遍历左子树
if (x.left!=null){
afterErgodic(x.left,keys);
}
//2.找到当前结点的右子树,如果不为空,递归遍历右子树
if (x.right!=null){
afterErgodic(x.right,keys);
}
//3.把当前结点的key放入到队列中;
keys.enqueue(x.key);
}
测试代码:
//测试代码
public class Test {
public static void main(String[] args) throws Exception {
BinaryTree<String, String> bt = new BinaryTree<>();
bt.put("E", "5");
bt.put("B", "2");
bt.put("G", "7");
bt.put("A", "1");
bt.put("D", "4");
bt.put("F", "6");
bt.put("H", "8");
bt.put("C", "3");
Queue<String> queue = bt.afterErgodic();
for (String key : queue) {
System.out.println(key+"="+bt.get(key));
}
}
}
1.6 二叉树的层序遍历
所谓的层序遍历,就是从根节点(第一层)开始,依次向下,获取每一层所有结点的值,有二叉树如下:
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
?
那么层序遍历的结果是:EBGADFHC
我们在4.4中创建的树上,添加层序遍历的API:?
public Queue<Key> layerErgodic():使用层序遍历,获取整个树中的所有键
实现步骤:
1.创建队列,存储每一层的结点;
2.使用循环从队列中弹出一个结点:
????????2.1获取当前结点的key;
????????2.2如果当前结点的左子结点不为空,则把左子结点放入到队列中
????????2.3如果当前结点的右子结点不为空,则把右子结点放入到队列中
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ??
?代码:
//使用层序遍历得到树中所有的键
public Queue<Key> layerErgodic(){
Queue<Key> keys = new Queue<>();
Queue<Node> nodes = new Queue<>();
nodes.enqueue(root);
while(!nodes.isEmpty()){
Node x = nodes.dequeue();
keys.enqueue(x.key);
if (x.left!=null){
nodes.enqueue(x.left);
}
if (x.right!=null){
nodes.enqueue(x.right);
}
}
return keys;
}
?测试代码:
//测试代码
public class Test {
public static void main(String[] args) throws Exception {
BinaryTree<String, String> bt = new BinaryTree<>();
bt.put("E", "5");
bt.put("B", "2");
bt.put("G", "7");
bt.put("A", "1");
bt.put("D", "4");
bt.put("F", "6");
bt.put("H", "8");
bt.put("C", "3");
Queue<String> queue = bt.layerErgodic();
for (String key : queue) {
System.out.println(key+"="+bt.get(key));
}
}
}
|