IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> 算法数据结构(二十四)----斐波那契数列到矩阵快速幂技巧 -> 正文阅读

[数据结构与算法]算法数据结构(二十四)----斐波那契数列到矩阵快速幂技巧

类似斐波那契数列的递归优化

如果某个递归,除了初始项之外,具有如下的形式

F(N) = C1 * F(N) + C2 * F(N-1) + … + Ck * F(N-k) ( C1…Ck k都是常数)

并且这个递归的表达式是严格的、不随条件转移的

那么都存在类似斐波那契数列的优化,时间复杂度都能优化成O(logN)


题目一

?斐波那契数列矩阵乘法方式的实现

//递归实现
public static int f1(int n) {
		if (n < 1) {
			return 0;
		}
		if (n == 1 || n == 2) {
			return 1;
		}
		return f1(n - 1) + f1(n - 2);
	}
//迭代方式
public static int f2(int n) {
		if (n < 1) {
			return 0;
		}
		if (n == 1 || n == 2) {
			return 1;
		}
		int res = 1;
		int pre = 1;
		int tmp = 0;
		for (int i = 3; i <= n; i++) {
			tmp = res;
			res = res + pre;
			pre = tmp;
		}
		return res;
	}
// O(logN)矩阵方式
	public static int f3(int n) {
		if (n < 1) {
			return 0;
		}
		if (n == 1 || n == 2) {
			return 1;
		}
		// [ 1 ,1 ]
		// [ 1, 0 ]
		int[][] base = { 
				{ 1, 1 }, 
				{ 1, 0 } 
				};
		int[][] res = matrixPower(base, n - 2);
		return res[0][0] + res[1][0];
	}

	public static int[][] matrixPower(int[][] m, int p) {
		int[][] res = new int[m.length][m[0].length];
		for (int i = 0; i < res.length; i++) {
			res[i][i] = 1;
		}
		// res = 矩阵中的1
		int[][] t = m;// 矩阵1次方
		for (; p != 0; p >>= 1) {
			if ((p & 1) != 0) {
				res = muliMatrix(res, t);
			}
			t = muliMatrix(t, t);
		}
		return res;
	}

	// 两个矩阵乘完之后的结果返回
	public static int[][] muliMatrix(int[][] m1, int[][] m2) {
		int[][] res = new int[m1.length][m2[0].length];
		for (int i = 0; i < m1.length; i++) {
			for (int j = 0; j < m2[0].length; j++) {
				for (int k = 0; k < m2.length; k++) {
					res[i][j] += m1[i][k] * m2[k][j];
				}
			}
		}
		return res;
	}

题目二

一个人可以一次往上迈1个台阶,也可以迈2个台阶

返回这个人迈上N级台阶的方法数

第n阶可以从n-1阶台阶到达,也可以从n-2阶台阶到达:

F(n)=F(n-1)+F(n-2)


?题目三

第一年农场有1只成熟的母牛A,往后的每年:

1)每一只成熟的母牛都会生一只母牛

2)每一只新出生的母牛都在出生的第三年成熟

3)每一只母牛永远不会死

返回N年后牛的数量

n年的牛由n-1年牛的个数+n-3年牛个数(满三年都生一只小牛)

F(n)=F(n-1)+F(n-3)


题目四

给定一个数N,想象只由01两种字符,组成的所有长度为N的字符串

如果某个字符串,任何0字符的左边都有1紧挨着,认为这个字符串达标

返回有多少达标的字符串

n位数,最左边一位为1有:F(n-1)种方法;最左边为0则倒数第二位必须为1,则有F(n-2)种方法

F(n)=F(n-1)+F(n-2)


题目五

?用1*2的瓷砖,把N*2的区域填满

返回铺瓷砖的方法数

第一个瓷砖竖着排,则后面有F(n-1)种方法;第一个瓷砖横着排,则后面有F(n-2)种方法

F(n)=F(n-1)+F(n-2)

  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2021-08-18 12:56:50  更:2021-08-18 12:58:22 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/12 20:48:46-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码