线段树
1,一种支持范围整体修改和范围整体查询的数据结构
2,解决的问题范畴:
大范围信息可以只由左、右两侧信息加工出,
而不必遍历左右两个子范围的具体状况
线段树实例一
?给定一个数组arr,用户希望你实现如下三个方法
1)void add(int L, int R, int V) :? 让数组arr[L…R]上每个数都加上V
2)void update(int L, int R, int V) :? 让数组arr[L…R]上每个数都变成V
3)int sum(int L, int R) :让返回arr[L…R]这个范围整体的累加和
怎么让这三个方法,时间复杂度都是O(logN)
????????线段树的累加和用数据形式存储,数据长度为原来数组的4倍,逻辑结果为二叉树。0节点不用,i节点的左孩子为2*i?,右孩子为2*i+1
? ? ? ? sum(i)=sum(2*i)+sum(2*i+1)
public static class SegmentTree {
// arr[]为原序列的信息从0开始,但在arr里是从1开始的
// sum[]模拟线段树维护区间和
// lazy[]为累加和懒惰标记
// change[]为更新的值
// update[]为更新慵懒标记
private int MAXN;
private int[] arr;
private int[] sum;
private int[] lazy;
private int[] change;
private boolean[] update;
public SegmentTree(int[] origin) {
MAXN = origin.length + 1;
arr = new int[MAXN]; // arr[0] 不用 从1开始使用
for (int i = 1; i < MAXN; i++) {
arr[i] = origin[i - 1];
}
sum = new int[MAXN << 2]; // 用来支持脑补概念中,某一个范围的累加和信息
lazy = new int[MAXN << 2]; // 用来支持脑补概念中,某一个范围沒有往下傳遞的纍加任務
change = new int[MAXN << 2]; // 用来支持脑补概念中,某一个范围有没有更新操作的任务
update = new boolean[MAXN << 2]; // 用来支持脑补概念中,某一个范围更新任务,更新成了什么
}
private void pushUp(int rt) {
sum[rt] = sum[rt << 1] + sum[rt << 1 | 1];
}
// 之前的,所有懒增加,和懒更新,从父范围,发给左右两个子范围
// 分发策略是什么
// ln表示左子树元素结点个数,rn表示右子树结点个数
private void pushDown(int rt, int ln, int rn) {
if (update[rt]) {
update[rt << 1] = true;
update[rt << 1 | 1] = true;
change[rt << 1] = change[rt];
change[rt << 1 | 1] = change[rt];
lazy[rt << 1] = 0;
lazy[rt << 1 | 1] = 0;
sum[rt << 1] = change[rt] * ln;
sum[rt << 1 | 1] = change[rt] * rn;
update[rt] = false;
}
if (lazy[rt] != 0) {
lazy[rt << 1] += lazy[rt];
sum[rt << 1] += lazy[rt] * ln;
lazy[rt << 1 | 1] += lazy[rt];
sum[rt << 1 | 1] += lazy[rt] * rn;
lazy[rt] = 0;
}
}
// 在初始化阶段,先把sum数组,填好
// 在arr[l~r]范围上,去build,1~N,
// rt : 这个范围在sum中的下标
public void build(int l, int r, int rt) {
if (l == r) {
sum[rt] = arr[l];
return;
}
int mid = (l + r) >> 1;
build(l, mid, rt << 1);
build(mid + 1, r, rt << 1 | 1);
pushUp(rt);
}
// L~R 所有的值变成C
// l~r rt
public void update(int L, int R, int C, int l, int r, int rt) {
if (L <= l && r <= R) {
update[rt] = true;
change[rt] = C;
sum[rt] = C * (r - l + 1);
lazy[rt] = 0;
return;
}
// 当前任务躲不掉,无法懒更新,要往下发
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
if (L <= mid) {
update(L, R, C, l, mid, rt << 1);
}
if (R > mid) {
update(L, R, C, mid + 1, r, rt << 1 | 1);
}
pushUp(rt);
}
// L~R, C 任务!
// rt,l~r
public void add(int L, int R, int C, int l, int r, int rt) {
// 任务如果把此时的范围全包了!
if (L <= l && r <= R) {
sum[rt] += C * (r - l + 1);
lazy[rt] += C;
return;
}
// 任务没有把你全包!
// l r mid = (l+r)/2
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
// L~R
if (L <= mid) {
add(L, R, C, l, mid, rt << 1);
}
if (R > mid) {
add(L, R, C, mid + 1, r, rt << 1 | 1);
}
pushUp(rt);
}
// 1~6 累加和是多少? 1~8 rt
public long query(int L, int R, int l, int r, int rt) {
if (L <= l && r <= R) {
return sum[rt];
}
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
long ans = 0;
if (L <= mid) {
ans += query(L, R, l, mid, rt << 1);
}
if (R > mid) {
ans += query(L, R, mid + 1, r, rt << 1 | 1);
}
return ans;
}
}
线段树实例二
?想象一下标准的俄罗斯方块游戏,X轴是积木最终下落到底的轴线
下面是这个游戏的简化版:
1)只会下落正方形积木
2)[a,b] -> 代表一个边长为b的正方形积木,积木左边缘沿着X = a这条线从上方掉落
3)认为整个X轴都可能接住积木,也就是说简化版游戏是没有整体的左右边界的
4)没有整体的左右边界,所以简化版游戏不会消除积木,因为不会有哪一层被填满。
给定一个N*2的二维数组matrix,可以代表N个积木依次掉落,
返回每一次掉落之后的最大高度
与实例一实现类似: max(i) = Math.max(max(2*i),max(2*i+1))
public static class SegmentTree {
private int[] max;
private int[] change;
private boolean[] update;
public SegmentTree(int size) {
int N = size + 1;
max = new int[N << 2];
change = new int[N << 2];
update = new boolean[N << 2];
}
private void pushUp(int rt) {
max[rt] = Math.max(max[rt << 1], max[rt << 1 | 1]);
}
// ln表示左子树元素结点个数,rn表示右子树结点个数
private void pushDown(int rt, int ln, int rn) {
if (update[rt]) {
update[rt << 1] = true;
update[rt << 1 | 1] = true;
change[rt << 1] = change[rt];
change[rt << 1 | 1] = change[rt];
max[rt << 1] = change[rt];
max[rt << 1 | 1] = change[rt];
update[rt] = false;
}
}
public void update(int L, int R, int C, int l, int r, int rt) {
if (L <= l && r <= R) {
update[rt] = true;
change[rt] = C;
max[rt] = C;
return;
}
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
if (L <= mid) {
update(L, R, C, l, mid, rt << 1);
}
if (R > mid) {
update(L, R, C, mid + 1, r, rt << 1 | 1);
}
pushUp(rt);
}
public int query(int L, int R, int l, int r, int rt) {
if (L <= l && r <= R) {
return max[rt];
}
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
int left = 0;
int right = 0;
if (L <= mid) {
left = query(L, R, l, mid, rt << 1);
}
if (R > mid) {
right = query(L, R, mid + 1, r, rt << 1 | 1);
}
return Math.max(left, right);
}
}
?
|