题意
- 设计一种数据结构,要求能做下述操作:
(1)
[
L
,
R
]
[L,R]
[L,R] 区间的数置为
X
X
X (2)
[
L
,
R
]
[L,R]
[L,R] 区间内的数,第
i
i
i 个数字增加
(
i
?
L
+
1
)
X
(i-L+1)X
(i?L+1)X ,即加一个等差数列 (3) 在第
C
C
C 个位置前插入一个数字
X
X
X (4) 查询区间
[
L
,
R
]
[L,R]
[L,R] 的权值和 - 初始数组
1
≤
N
≤
1
0
5
1\le N\le 10^5
1≤N≤105
操作次数
1
≤
Q
≤
1
0
5
1\le Q\le 10^5
1≤Q≤105
思路
- 首先操作
1
,
2
,
4
1,2,4
1,2,4 都是普通的线段树就可以做,但是明显操作
3
3
3 只有平衡树才可以做。
所以我这里选择相对简单的
T
r
e
a
p
Treap
Treap 来做。 - 区间置数,只要打一个标记,然后下传即可做。
查询区间和,类似线段树也好做。 区间加等差,记一个首项标记和公差标记,然后在
p
u
s
h
_
d
o
w
n
push\_down
push_down 的时候下传,注意更新首项标记 位置插入,只要查看中序遍历的第
C
C
C 个位置在哪里,然后插入这个位置的前驱即可。 - 代码由于第一次写,不是特别熟,所以记录一下
代码
- 时间复杂度:
O
(
(
n
+
Q
)
log
?
n
)
O((n+Q)\log n)
O((n+Q)logn)
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define ls (nd[nd[p].son[0]])
#define rs (nd[nd[p].son[1]])
#define md (L + ls.sz)
void show(){std::cerr << endl;}template<typename T,typename... Args>void show(T x,Args... args){std::cerr << "[ " << x << " ] , ";show(args...);}
const int MAX = 2e5+50;
const int INF = 0x3f3f3f3f;
const ll LINF = 0x3f3f3f3f3f3f3f3f;
int Rand(){
static unsigned long long r=2333;
return (r*=233333)%=2147483647;
}
ll aa[MAX];
struct node{
int rval,sz;
int son[2];
ll val,A,D,sum;
ll tag;
}nd[MAX];
int tot,root;
int New(int v){
++tot;
nd[tot].sum = nd[tot].val = v;
nd[tot].rval = Rand();
nd[tot].sz = 1;
nd[tot].son[0] = nd[tot].son[1] = 0;
nd[tot].A = nd[tot].D = 0;
nd[tot].tag = -1;
return tot;
}
inline void push_up(int p){
nd[p].sum = ls.sum + rs.sum + nd[p].val;
nd[p].sz = ls.sz + rs.sz + 1;
}
inline void push_down(int p){
if(~nd[p].tag){
if(nd[p].son[0]){
ls.tag = nd[p].tag;
ls.sum = ls.sz * ls.tag;
ls.val = nd[p].tag;
}
if(nd[p].son[1]){
rs.tag = nd[p].tag;
rs.sum = rs.sz * rs.tag;
rs.val = nd[p].tag;
}
ls.D = rs.D = ls.A = rs.A = 0;
}
if(nd[p].D){
if(nd[p].son[0]){
ll F = nd[p].A;
ls.D += nd[p].D;
ls.A += F;
ls.val += F + nd[ls.son[0]].sz * nd[p].D;
ls.sum += (F + (F + (ls.sz - 1) * nd[p].D)) * ls.sz / 2;
}
if(nd[p].son[1]){
ll F = nd[p].A + (ls.sz + 1) * nd[p].D;
rs.D += nd[p].D;
rs.A += F;
rs.val += F + nd[rs.son[0]].sz * nd[p].D;
rs.sum += (F + (F + (rs.sz - 1) * nd[p].D)) * rs.sz / 2;
}
}
nd[p].A = nd[p].D = 0;
nd[p].tag = -1;
}
inline void Rotate(int &id,int d){
int temp = nd[id].son[d^1];
nd[id].son[d^1] = nd[temp].son[d];
nd[temp].son[d] = id;
id = temp;
push_up(nd[id].son[d]),push_up(id);
}
inline void Insert(int &p,int v,int pos){
if(!p){
p = New(aa[v]);
return;
}
push_down(p);
if(pos <= ls.sz + 1){
Insert(nd[p].son[0],v,pos);
if(nd[p].rval < ls.rval)Rotate(p,1);
}else{
Insert(nd[p].son[1],v,pos - (ls.sz + 1));
if(nd[p].rval < rs.rval)Rotate(p,0);
}
push_up(p);
}
void build(int n){
root = New(aa[1]);
for(int i = 2;i <= n;++i){
Insert(root,i,i);
}
}
inline void all_set(int p,int L,int R,int ux,int uy,ll k){
if(!p)return;
if(L >= ux && R <= uy){
nd[p].tag = k;
nd[p].A = nd[p].D = 0;
nd[p].sum = nd[p].sz * k;
nd[p].val = k;
return;
}
push_down(p);
if(ux <= md-1)all_set(nd[p].son[0],L,md-1,ux,uy,k);
if(uy >= md+1)all_set(nd[p].son[1],md+1,R,ux,uy,k);
if(md >= ux && md <= uy){
nd[p].val = k;
}
push_up(p);
}
inline void add_dc(int p,int L,int R,int ux,int uy,ll A,ll D){
if(!p)return;
if(L >= ux && R <= uy){
A = A + (L - ux) * D;
nd[p].A += A;
nd[p].D += D;
nd[p].sum += (A + (A + (nd[p].sz - 1) * D)) * nd[p].sz / 2;
nd[p].val += A + ls.sz * D;
return;
}
push_down(p);
if(ux <= md-1)add_dc(nd[p].son[0],L,md-1,ux,uy,A,D);
if(uy >= md+1)add_dc(nd[p].son[1],md+1,R,ux,uy,A,D);
if(md >= ux && md <= uy){
nd[p].val += A + (md - ux) * D;
}
push_up(p);
}
inline ll query(int p,int L,int R,int ux,int uy){
if(!p)return 0;
ll sum = 0;
if(L >= ux && R <= uy){
return nd[p].sum;
}
push_down(p);
if(ux <= md-1)sum += query(nd[p].son[0],L,md-1,ux,uy);
if(uy >= md+1)sum += query(nd[p].son[1],md+1,R,ux,uy);
if(md >= ux && md <= uy)sum += nd[p].val;
return sum;
}
void say(int p){
show(p,nd[p].val,nd[p].son[0],nd[p].son[1],nd[p].sum);
if(nd[p].son[0])say(nd[p].son[0]);
if(nd[p].son[1])say(nd[p].son[1]);
}
int main()
{
int N,Q;
N = read();Q = read();
for(int i = 1;i <= N;++i)aa[i] = read();
build(N);
while(Q--){
int op;
ll ta,tb,tc;op = read();
if(op == 1){
ta = read_ll();tb = read_ll();tc = read_ll();
all_set(root,1,N,ta,tb,tc);
}else if(op == 2){
ta = read_ll();tb = read_ll();tc = read_ll();
add_dc(root,1,N,ta,tb,tc,tc);
}else if(op == 3){
ta = read_ll();tb = read_ll();
N++;
aa[N] = tb;
Insert(root,N,ta);
}else{
ta = read_ll();tb = read_ll();
printf("%lld\n",query(root,1,N,ta,tb));
}
}
return 0;
}
|