IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> HashMap 源码解析 -> 正文阅读

[数据结构与算法]HashMap 源码解析

HashMap 源码解析

提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档


一、整体架构

HashMap底层的数据结构主要是数组+链表+红黑树。其中当链表的长度大于等于8时,链表会转化为红黑树,当红黑树的小于等于6的时候,红黑树会自动转化为链表,整体数据结构如下:

在这里插入图片描述
图中左边竖着的就是数组结构,数组的元素可能Node、链表和红黑树。比如数组下标为2的位置就是一个链表,下标为9的位置对应就是红黑树。
示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。

1.类注释

  1. 允许null值,不同于HashTable,是线程不安全;
  2. 影响因子是0.75,是均衡时间和空间损耗算出来的值,较高的值会较少空间开销,但是增加了查找成本hash冲突增加,链表长度变长,不扩容的条件:数组容量>需要的数组大小/加载因子
  3. 非线程安全,可以添加锁或者通过Collections#SynchronizedMap来实现线程安全,实现方法是在以上加上Synchronized锁
  4. 结果被修改,会快速失败。

2.常见属性

//初始容量为 16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
//最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;
//负载因子默认值
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//桶上的链表长度大于等于8时,链表转化成红黑树
static final int TREEIFY_THRESHOLD = 8;
//桶上的红黑树大小小于等于6时,红黑树转化成链表
static final int UNTREEIFY_THRESHOLD = 6;
//记录迭代过程中 HashMap 结构是否发生变化,如果有变化,迭代时会 fail-fast
transient int modCount;
//HashMap 的实际大小,可能不准(因为当你拿到这个值的时候,可能又发生了变化)
transient int size;
//存放数据的数组
transient Node<K,V>[] table;
// 扩容的门槛,有两种情况
// 如果初始化时,给定数组大小的话,通过 tableSizeFor 方法计算,数组大小永远接近于 2 的幂次方
// 如果是通过 resize 方法进行扩容,大小 = 数组容量 * 0.75
int threshold;
//链表的节点
static class Node<K,V> implements Map.Entry<K,V> {
//红黑树的节点
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {

扩容的门槛,有两种情况,如果初始化时,给定数组大小的话,通过 tableSizeFor 方法计算,数组大小永远接近于 2 的幂次方;如果是通过 resize 方法进行扩容,大小 = 数组容量 * 0.75。

二、新增

1.新增key,value大概步骤如下:

  1. 空数组有无初始化,没有的话初始化;
  2. 如果通过 key 的 hash 能够直接找到值,跳转到 6,否则到 3;
  3. 如果 hash 冲突,两种解决方案:链表 or 红黑树;
  4. 如果是链表,递归循环,把新元素追加到队尾;
  5. 如果是红黑树,调用红黑树新增的方法
  6. 通过 2、4、5 将新元素追加成功,再根据 onlyIfAbsent 判断是否需要覆盖;
  7. 判断是否需要扩容,需要扩容进行扩容,结束。
    在这里插入图片描述

代码细节如下:

// 入参 hash:通过 hash 算法计算出来的值。
// 入参 onlyIfAbsent:false 表示即使 key 已经存在了,仍然会用新值覆盖原来的值,默认为 false
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
// n 表示数组的长度,i 为数组索引下标,p 为 i 下标位置的 Node 值
Node<K,V>[] tab; Node<K,V> p; int n, i;
//如果数组为空,使用 resize 方法初始化
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 如果当前索引位置是空的,直接生成新的节点在当前索引位置上
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
// 如果当前索引位置有值的处理方法,即我们常说的如何解决 hash 冲突
else {
// e 当前节点的临时变量
Node<K,V> e; K k;
// 如果 key 的 hash 和值都相等,直接把当前下标位置的 Node 值赋值给临时变量
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
// 如果是红黑树,使用红黑树的方式新增
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
// 是个链表,把新节点放到链表的尾端
else {
// e = p.next 表示从头开始,遍历链表
// p.next == null 表明 p 是链表的尾节点
if ((e = p.next) == null) {
// 把新节点放到链表的尾部
p.next = newNode(hash, key, value, null);
// 当链表的长度大于等于 8 时,链表转红黑树
if (binCount >= TREEIFY_THRESHOLD - 1)
treeifyBin(tab, hash);
break;
}
// 链表遍历过程中,发现有元素和新增的元素相等,结束循环
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
//更改循环的当前元素,使 p 在遍历过程中,一直往后移动。
p = e;
}}
// 说明新节点的新增位置已经找到了
if (e != null) {
V oldValue = e.value;
// 当 onlyIfAbsent 为 false 时,才会覆盖值
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
// 返回老值
return oldValue;
}}
// 记录 HashMap 的数据结构发生了变化
++modCount;
//如果 HashMap 的实际大小大于扩容的门槛,开始扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}

2.链表的新增

链表的新增比较简单,就是把当前节点追加到链表的尾部,和 LinkedList 的追加实现一样的。当链表长度大于等于 8 时,此时的链表就会转化成红黑树,转化的方法是:treeifyBin,此方法有一个判断,当链表长度大于等于 8,并且整个数组大小大于 64 时,才会转成红黑树,当数组大小小于 64 时,只会触发扩容,不会转化成红黑树,转化成红黑树的过程也比较简单。

2.1 为什么链表是8才会转红黑树

链表查询的时间复杂度是 O (n),红黑树的查询复杂度是 O (log (n))。在链表数据不多的时候,使用链表进行遍历也比较快,只有当链表数据比较多的时候,才会转化成红黑树,但红黑树需要的占用空间是链表的 2 倍,考虑到转化时间和空间损耗,所以我们需要定义出转化的边界值。在考虑设计 8 这个值的时候,我们参考了泊松分布概率函数,由泊松分布中得出结论,链表各个长度的命中概率为:

  1. 2: 0.07581633
  2. 3: 0.01263606
  3. 4: 0.00157952
  4. 5: 0.00015795
  5. 6: 0.00001316
  6. 7: 0.00000094
  7. 8: 0.00000006
  8. 意思是,当链表的长度是 8 的时候,出现的概率是 0.00000006,不到千万分之一,所以说正常情况下,链表的长度不可能到达 8 ,而一旦到达 8 时,肯定是 hash 算法出了问题,所以在这种情况下,为了让 HashMap 仍然有较高的查询性能,所以让链表转化成红黑树,我们正常写代码,使用 HashMap 时,几乎不会碰到链表转化成红黑树的情况,毕竟概念只有千万分之一。

3.红黑树新增节点过程

  1. 首先判断新增的节点在红黑树是不是已经存在,判断手段如下:
    9.1. 如果节点没有实现 Comparable 接口,使用 equals 进行判断;
    9.2. 如果节点自己实现了 Comparable 接口,使用 compareTo 进行判断
  2. 新增的节点如果已经在红黑树上,直接返回;不在的话,判断新增节点是在当前节点的左边还是右边,左边值小,右边值大;
  3. 自旋递归 1 和 2 步,直到当前节点的左边或者右边的节点为空时,停止自旋,当前节点即为
    我们新增节点的父节点;
  4. 把新增节点放到当前节点的左边或右边为空的地方,并于当前节点建立父子节点关系;
  5. 进行着色和旋转,结束。
    具体源码如下:
//入参 h:key 的hash值
final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,int h, K k, V v) {
Class<?> kc = null;
boolean searched = false;
//找到根节点
TreeNode<K,V> root = (parent != null) ? root() : this;
//自旋
for (TreeNode<K,V> p = root;;) {
int dir, ph; K pk;
// p hash 值大于 h,说明 p 在 h 的右边
if ((ph = p.hash) > h)
dir = -1;
// p hash 值小于 h,说明 p 在 h 的左边
else if (ph < h)
dir = 1;
//要放进去key在当前树中已经存在了(equals来判断)
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
return p;
//自己实现的Comparable的话,不能用hashcode比较了,需要用compareTo
else if ((kc == null &&
//得到key的Class类型,如果key没有实现Comparable就是null
if (!searched) {
TreeNode<K,V> q, ch;
searched = true;
if (((ch = p.left) != null &&
(q = ch.find(h, k, kc)) != null) ||
((ch = p.right) != null &&
(q = ch.find(h, k, kc)) != null))
return q;
}
dir = tieBreakOrder(k, pk);
} T
reeNode<K,V> xp = p;
//找到和当前hashcode值相近的节点(当前节点的左右子节点其中一个为空即可)
if ((p = (dir <= 0) ? p.left : p.right) == null) {
Node<K,V> xpn = xp.next;
//生成新的节点
TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
//把新节点放在当前子节点为空的位置上
if (dir <= 0)
xp.left = x;
else
xp.right = x;
//当前节点和新节点建立父子,前后关系
xp.next = x;
x.parent = x.prev = xp;
if (xpn != null)
((TreeNode<K,V>)xpn).prev = x;
//balanceInsertion 对红黑树进行着色或旋转,以达到更多的查找效率,着色或旋转的几种场
//着色:新节点总是为红色;如果新节点的父亲是黑色,则不需要重新着色;如果父亲是红色
//旋转: 父亲是红色,叔叔是黑色时,进行旋转
//如果当前节点是父亲的右节点,则进行左旋
//如果当前节点是父亲的左节点,则进行右旋
//moveRootToFront 方法是把算出来的root放到根节点上
moveRootToFront(tab, balanceInsertion(root, x));
return null;}}}

三、查找

HashMap 的查找主要分为以下两步:
14. 判断当前节点有无 next 节点,有的话判断是链表类型,还是红黑树类型。
15. 分别走链表和红黑树不同类型的查找方法。

1 链表查找的关键代码是:

// 采用自旋方式从链表中查找 key,e 初始为为链表的头节点
do {
// 如果当前节点 hash 等于 key 的 hash,并且 equals 相等,当前节点就是我们要找的节点
// 当 hash 冲突时,同一个 hash 值上是一个链表的时候,我们是通过 equals 方法来比较 key 是否
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
// 否则,把当前节点的下一个节点拿出来继续寻找
} while ((e = e.next) != null);

2 红黑树查找关键代码看数据结构


总结

提示:HashMap 的内容虽然较多,但大多数 api 都只是对数组 + 链表 + 红黑树这种数据结构进行封装而已,本小节我们从新增和查找两个角度进行了源码的深入分析,分析了是如何对数组、链表和红黑树进行操作的。

  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2021-09-18 10:27:04  更:2021-09-18 10:29:30 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 2:40:33-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码