一、图、树、表的区别
表结构: 数据元素之间存在线性关系,每个数据元素只可能有一个前驱和一个后继(一对一)。 树结构: 数据元素之间存在层次关系,上一层的数据元素可以和下一层的多个数据元素存在关系(一对多)。 图结构: 任意两个数据元素之间都可能存在关系,可以是多对多的关系。
二、图的相关术语
1.顶点: 在图型结构中,数据元素被称为顶点。 2.弧: 从顶点V1出发,可以到达顶点V2,这种关系被称为弧,用<V1,V2>表示,V1被称为弧尾,V2被称为弧头,这种图被称为有向图。 3.边: 从顶点V1可以到达顶点V2,顶点V2可以到达顶点V1,这种关系被称为边,用(V1,V2), 这种图被称为无向图。 注意: 图型结构不讨论顶点到自身的边或弧。 4.无向图: 如果图中有一条边(V1,V2),则称V1,V2互为邻接点,即V1,V2相邻,或者说边(V1,V2)依附 于V1,V2,又或者说V1,V2相关联。与顶点V1相关联的顶点的数量,被称为V1的度。 5.有向图: 如果图中有一条弧<V1,V2>,则称顶点V1邻接到顶点V2,顶点V2邻接自顶点V1。 以顶点V1作为弧尾的弧的数量,被称为V1的出度。 以顶点V1作为弧头的弧的数量,被称为V1的入度。 6.如果用n表示顶点的数量,e表示边或弧的数量: 有向图的e的取值范围:[0,(n-1)*n],如果e的数量是(n-1)*n,这种图叫完全有向图。 无向图的e的取值范围:[0,(n-1)*n/2],如果e的数量是(n-1)*n/2,这种图叫完全无向图。 e < nlogn 这种图被称为稀疏图,反之被称为稠密图。 7. 如果图的弧或边具有相关数据,这种与弧或边相关的数据叫权或权重,可看作是一个顶点到另一个顶点的消耗,带权的图称为网。 8. 假设有两个图:G1 = (V1,{E1}) , G2 = (V2,{E2}) 如果V1是V2的子集且E1是E2的子集,则称G1是G2的子图。 9. 有图G = (V,{E}),顶点V1到Vj的路径是一个顶点序列(V1,V2,…Vj) (1)如果V1就是Vj,且边或弧的数量等于顶点数,该路径称为回路或环。 (2)序列中的顶点不重复出现和路径称为简单路径。 (3)除了每个顶点和最后一个顶点,其余顶点不重复出现的回路称为简单回路。 10. 在无向图G中,如果V1到V2有路径,则称V1和V2是连通的,如果图中的任意两个顶点都是连通的,则称G是连通图。如果G1不是连通图,而G是它的子图,则称G是G1的连通分量,也叫极大连通子图。 11. 在有向图G中,如果任意一对顶点Vi,Vj,从Vi到Vj和Vj到Vi都存在路径,则称G是强连通图。如果G1不是强连通图,而G是它的子图,则称G是G1的强连通分量,也叫极大强连通子图。 12. 一个连通图的生成树是一个极小连通子图,它包含图中的全部顶点,但只有n-1条边,如果在一棵生成树上再加一条边,必定构成一个环。 13. 一棵有n个顶点的生成树有且仅有n-1条边。但有n-1条边的图不一定是生成树。
二、图的相关术语
(1)邻接矩阵: 由顶点表和边表组成 [A][B][C][D][E][F][G] 顶点表 [0][0][0][0][0][0][1] //[A] 边表 [0][0][0][0][0][0][0] //[B] [1][0][0][0][0][0][0] //[C] [0][0][0][0][0][0][0] //[D] [0][0][0][0][0][0][0] //[E] [0][0][0][0][0][0][0] //[F] [1][0][0][0][0][0][0] //[G] 优点: 计算出度、入度方便。 缺点: 添加删除麻烦,如果是稀疏图,非常浪费存储空间。
(2)邻接表: 顶点[数据][第一条边指针] 边结点 [顶点下标][下一条边指针] [A]-> 1-> 3-> [B]-> 4-> 3-> [C]-> 3-> [D]-> 2-> 3-> [E]-> 3-> 0-> [F]-> 4-> 是一种顺序+链式混合存储结构 优点:节约存储空间 缺点:计算入度不方便
(3)十字链表: 顶点[数据][弧头第一条边指针][弧尾第一条边指针] 边结点 [入顶点下标][出顶点下标][弧头相同指针][弧尾相同指针] 优点:在邻接的基础进行了拓展,既能节约存储空间,也能方便计算入度。
三、图的遍历:
深度优先:DFS 广度优先:BFS 遍历顺序不是唯一的,会受到顶点顺序和边的添加顺序的影响。
|