IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> MySQL—索引 -> 正文阅读

[数据结构与算法]MySQL—索引

一、索引功能

索引作用:加速查询。在MySQL中被称为“键”,是存储引擎用于快速找到记录的一种数据结构。可以将查询性能提高好几个数量级。
将查询内容缩小到一个更小的区域范围,(MyISAM会另外形成内存存放索引)通过查询到的索引来映射获取需要的数据。

磁盘IO:当一次IO时,不光把当前磁盘地址的数据读取到内存缓存区,也会把相邻的数据也都读取到内存缓冲区内,因为局部预读性原理告诉我们,当计算机访问一个地址的数据的时候,与其相邻的数据也会很快被访问到。每一次IO读取的数据我们称之为一页(page)。具体一页有多大数据跟操作系统有关,一般为4k或8k。

1、B+树

在这里插入图片描述
浅蓝色的块我们称之为一个磁盘块,磁盘块包含几个数据项(深蓝色所示)和指针(黄色所示)。如磁盘块1包含数据项17和35,包含指针P1、P2、P3,P1表示小于17的磁盘块,P2表示在17和35之间的磁盘块,P3表示大于35的磁盘块。真实的数据存在于叶子节点即3、5、9、10、13、15、28、29、36、60、75、79、90、99。非叶子节点只不存储真实的数据,只存储指引搜索方向的数据项,如17、35并不真实存在于数据表中。

b+树的数据查找过程:

比如查找数据项29,那么首先会把磁盘块1由磁盘加载到内存,此时发生一次IO,在内存中用二分查找确定29在17和35之间,锁定磁盘块1的P2指针,内存时间因为非常短(相比磁盘的IO)可以忽略不计,通过磁盘块1的P2指针的磁盘地址把磁盘块3由磁盘加载到内存,发生第二次IO,29在26和30之间,锁定磁盘块3的P2指针,通过指针加载磁盘块8到内存,发生第三次IO,同时内存中做二分查找找到29,结束查询,总计三次IO。真实的情况是,3层的b+树可以表示上百万的数据,如果上百万的数据查找只需要三次IO,性能提高将是巨大的,如果没有索引,每个数据项都要发生一次IO,那么总共需要百万次的IO,显然成本非常非常高。

索引字段:

通过上面的分析,IO次数取决于b+树的高度h,假设当前数据表的数据为N,每个磁盘块的数据项的数量是m,则有h=㏒(m+1)N,当数据量N一定的情况下,m越大,h越小;而m = 磁盘块的大小 / 数据项的大小,磁盘块的大小也就是一个数据页的大小,是固定的,如果数据项占的空间越小,数据项的数量越多,树的高度越低。这就是为什么每个数据项,即索引字段要尽量的小,比如int占4字节,要比bigint8字节少一半。这也是为什么b+树要求把真实的数据放到叶子节点而不是内层节点,一旦放到内层节点,磁盘块的数据项会大幅度下降,导致树增高。当数据项等于1时将会退化成线性表。

当真实数据放入内层节点,数据块数据项会减少,会增高b+树。致使从原本的表结构退化为线性结构。也就降低查询速度。

索引的最左匹配特性(即从左往右匹配):

当b+树的数据项是复合的数据结构,比如(name,age,sex)的时候,b+数是按照从左到右的顺序来建立搜索树的,比如当(张三,20,F)这样的数据来检索的时候,b+树会优先比较name来确定下一步的所搜方向,如果name相同再依次比较age和sex,最后得到检索的数据;但当(20,F)这样的没有name的数据来的时候,b+树就不知道下一步该查哪个节点,因为建立搜索树的时候name就是第一个比较因子,必须要先根据name来搜索才能知道下一步去哪里查询。比如当(张三,F)这样的数据来检索时,b+树可以用name来指定搜索方向,但下一个字段age的缺失,所以只能把名字等于张三的数据都找到,然后再匹配性别是F的数据了, 这个是非常重要的性质,即索引的最左匹配特性。

字段缺失的情况下,只会查询到缺失字段之前的数据进行显示。且前面所有匹配字段的数据都会进行显示。

2、索引的管理

索引的主要功能是加速查询,但是某些索引还能提供约束条件。(主键索引、唯一索引)

a、索引分类

1.普通索引index :加速查找
2.唯一索引
    主键索引:primary key :加速查找+约束(不为空且唯一)
    唯一索引:unique:加速查找+约束 (唯一)
3.联合索引
    -primary key(id,name):联合主键索引
    -unique(id,name):联合唯一索引
    -index(id,name):联合普通索引
4.全文索引fulltext :用于搜索很长一篇文章的时候,效果最好。
5.空间索引spatial :了解就好,几乎不用

其中的两大类型:hash、btree

hash类型的索引:查询单条快,范围查询慢
btree类型的索引:b+树,层数越多,数据量指数级增长(我们就用它,因为innodb默认支持它)

#不同的存储引擎支持的索引类型也不一样
InnoDB 支持事务,支持行级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
MyISAM 不支持事务,支持表级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
Memory 不支持事务,支持表级别锁定,支持 B-tree、Hash 等索引,不支持 Full-text 索引;
NDB 支持事务,支持行级别锁定,支持 Hash 索引,不支持 B-tree、Full-text 等索引;
Archive 不支持事务,支持表级别锁定,不支持 B-tree、Hash、Full-text 等索引;

b、创建索引的几种方法

1. 创建/删除索引的语法

#方法一:创建表时
      CREATE TABLE 表名 (
                字段名1  数据类型 [完整性约束条件…],
                字段名2  数据类型 [完整性约束条件…],
                [UNIQUE | FULLTEXT | SPATIAL ]   INDEX | KEY
                [索引名]  (字段名[(长度)]  [ASC |DESC]) 
               );


#方法二:CREATE在已存在的表上创建索引
        CREATE  [UNIQUE | FULLTEXT | SPATIAL ]  INDEX  索引名 
                     ON 表名 (字段名[(长度)]  [ASC |DESC]) ;

#方法三:ALTER TABLE在已存在的表上创建索引
        ALTER TABLE 表名 ADD  [UNIQUE | FULLTEXT | SPATIAL ] INDEX
                             索引名 (字段名[(长度)]  [ASC |DESC]) ;
                             
#删除索引:DROP INDEX 索引名 ON 表名字;
### 查看帮助文档
help create
help create index
==================
1.创建索引
    -在创建表时就创建(需要注意的几点)
    create table s1(
    id int ,#可以在这加primary key
    #id int index #不可以这样加索引,因为index只是索引,没有约束一说,
    #不能像主键,还有唯一约束一样,在定义字段的时候加索引
    name char(20),
    age int,
    email varchar(30)
    #primary key(id) #也可以在这加
    index(id) #可以这样加
    );
    -在创建表后在创建
    create index name on s1(name); #添加普通索引
    create unique age on s1(age);添加唯一索引
    alter table s1 add primary key(id); #添加住建索引,也就是给id字段增加一个主键约束
    create index name on s1(id,name); #添加普通联合索引
2.删除索引
    drop index id on s1;
    drop index name on s1; #删除普通索引
    drop index age on s1; #删除唯一索引,就和普通索引一样,不用在index前加unique来删,直接就可以删了
    alter table s1 drop primary key; #删除主键(因为它添加的时候是按照alter来增加的,那么我们也用alter来删)
# a创建表,且插入数据
#1. 准备表
create table s1(
id int,
name varchar(20),
gender char(6),
email varchar(50)
);

#2. 创建存储过程,实现批量插入记录
delimiter $$ #声明存储过程的结束符号为$$
create procedure auto_insert1()
BEGIN
    declare i int default 1;
    while(i<3000000)do
        insert into s1 values(i,concat('egon',i),'male',concat('egon',i,'@oldboy'));
        set i=i+1;
    end while;
END$$ #$$结束
delimiter ; #重新声明分号为结束符号

# 3.查看存储过程
show create procedure auto_insert1\G 

# 4.调用存储过程
call auto_insert1();

在没有索引的前提下测试查询速度

#无索引:从头到尾扫描一遍,所以查询速度很慢
mysql> select * from s1 where id=333;
+------+---------+--------+----------------+
| id   | name    | gender | email          |
+------+---------+--------+----------------+
|  333 | egon333 | male   | 333@oldboy.com |
|  333 | egon333 | f      | alex333@oldboy |
|  333 | egon333 | f      | alex333@oldboy |
+------+---------+--------+----------------+
rows in set (0.32 sec)

mysql> select * from s1 where email='egon333@oldboy';
rows in set (0.36 sec)

索引后查询

#1. 一定是为搜索条件的字段创建索引,比如select * from t1 where age > 5;就需要为age加上索引

#2. 在表中已经有大量数据的情况下,建索引会很慢,且占用硬盘空间,插入删除更新都很慢,只有查询快
比如create index idx on s1(id);会扫描表中所有的数据,然后以id为数据项,创建索引结构,存放于硬盘的表中。
建完以后,再查询就会很快了

#3. 需要注意的是:innodb表的索引会存放于s1.ibd文件中,而myisam表的索引则会有单独的索引文件table1.MYI

3、索引的方式

a、覆盖索引

select * from s1 where id=123;
该sql命中了索引,但未覆盖索引。
利用id=123到索引的数据结构中定位到该id在硬盘中的位置,或者说再数据表中的位置。
但是我们select的字段为*,除了id以外还需要其他字段,这就意味着,我们通过索引结构取到id还不够,
还需要利用该id再去找到该id所在行的其他字段值,这是需要时间的,很明显,如果我们只select id,
就减去了这份苦恼,如下
select id from s1 where id=123;
这条就是覆盖索引了,命中索引,且从索引的数据结构直接就取到了id在硬盘的地址,速度很快

在这里插入图片描述

c、联合索引

d、索引合并

#索引合并:把多个单列索引合并使用

#分析:
组合索引能做到的事情,我们都可以用索引合并去解决,比如
create index ne on s1(name,email);
#组合索引
我们完全可以单独为name和email创建索引

组合索引可以命中:
select * from s1 where name='egon' ;
select * from s1 where name='egon' and email='adf';

索引合并可以命中:
select * from s1 where name='egon' ;
select * from s1 where email='adf';
select * from s1 where name='egon' and email='adf';

乍一看好像索引合并更好了:可以命中更多的情况,但其实要分情况去看,如果是name='egon' and email='adf',
那么组合索引的效率要高于索引合并,如果是单条件查,那么还是用索引合并比较合理

最左前缀

#1.最左前缀匹配原则,非常重要的原则,
create index ix_name_email on s1(name,email,)
- 最左前缀匹配:必须按照从左到右的顺序匹配
select * from s1 where name='egon'; #可以
select * from s1 where name='egon' and email='asdf'; #可以
select * from s1 where email='alex@oldboy.com'; #不可以
mysql会一直向右匹配直到遇到范围查询(><、between、like)就停止匹配,
比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,
d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。

#2.=和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器
会帮你优化成索引可以识别的形式

#3.尽量选择区分度高的列作为索引,区分度的公式是count(distinct col)/count(*),
表示字段不重复的比例,比例越大我们扫描的记录数越少,唯一键的区分度是1,而一些状态、
性别字段可能在大数据面前区分度就是0,那可能有人会问,这个比例有什么经验值吗?使用场景不同,
这个值也很难确定,一般需要join的字段我们都要求是0.1以上,即平均1条扫描10条记录

#4.索引列不能参与计算,保持列“干净”,比如from_unixtime(create_time) =2014-05-29’
就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,
但进行检索时,需要把所有元素都应用函数才能比较,显然成本太大。
所以语句应该写成create_time = unix_timestamp(2014-05-29);
  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2021-10-11 17:45:19  更:2021-10-11 17:45:52 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 6:24:34-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码