基础面试题
二叉树的前序遍历
题目:在线OJ
思考:
首先,我们要了解,前序遍历就是按照顺序:根节点—左子树—右子树的方式遍历树(根左右) 在访问左右子树的时候,按照上述同样的方法遍历,因此我们可以考虑使用递归来解决
- 创建一个 List,将根节点的元素加入到 List 中
- 递归遍历左子树,把左子树的遍历结果加入到 List 中
- 递归遍历右子树,把右子树的遍历结果加入到 List 中
- 最后返回这个 List 即可
画图分析:
代码实现:
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> result = new ArrayList<>();
if(root == null){
return result;
}
result.add(root.val);
result.addAll(preorderTraversal(root.left));
result.addAll(preorderTraversal(root.right));
return result;
}
二叉树的中序遍历
题目:在线OJ
思考:
中序遍历是按照顺序:左子树遍历—根节点—右子树遍历的方式来遍历树(左根右) 同先序遍历一样,使用递归解决
画图分析:
代码实现:
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> result = new ArrayList<>();
if(root == null){
return result;
}
result.addAll(inorderTraversal(root.left));
result.add(root.val);
result.addAll(inorderTraversal(root.right));
return result;
}
二叉树的后续遍历结果
题目:在线OJ
思考:
后续遍历按照顺序:左子树遍历—右子树遍历—根节点的遍历方式来遍历树的(左右根) 实现过程参考前序遍历
代码实现:
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> result = new ArrayList<>();
if(root == null){
return result;
}
result.addAll(postorderTraversal(root.left));
result.addAll(postorderTraversal(root.right));
result.add(root.val);
return result;
}
相同的树
题目:在线OJ
思考:
- 先判断根节点是否相同
- 遍历判断左子树是否相同
- 遍历判断右子树是否相同
以上条件均满足时,则说明这两棵树相同
画图分析:
代码实现:
public boolean isSameTree(TreeNode p, TreeNode q) {
if(p == null && q == null){
return true;
}
if(p == null || q == null){
return false;
}
if(p.val != q.val){
return false;
}
return isSameTree(p.left,q.left) && isSameTree(p.right,q.right);
}
另一棵树的子树
题目:在线OJ
思考:
判断一棵树是不是另外一棵树的子树,本质就是在判断一棵树和另外一颗树的某个子树是否相等 可使用:遍历 + 递归拆分问题
- 先检查 root 和 subRoot 是否相等
- 检查 root.left 是否包含 subRoot
- 在检查 root.right 是否包含 subRoot
上述满足一个即可
画图:
上述画了左子树的情况,若左子树在不相同,接着再递归右子树与子树比较,只要符合一种情况即可
代码实现:
public boolean isSubtree(TreeNode root, TreeNode subRoot) {
if(root == null && subRoot == null){
return true;
}
if(root == null || subRoot == null){
return false;
}
boolean ret = false;
if(root.val == subRoot.val){
ret = isSameTree(root,subRoot);
}
return ret || isSubtree(root.left,subRoot) || isSubtree(root.right,subRoot);
}
二叉树的最大深度
题目:在线OJ
思考:
深度即:根节点到最远叶子节点的层数 此处要注意深度是从 0 开始算,还是从 1 开始算 二叉树的最大深度,即:max(左子树深度,右子树深度) + 1
代码实现:
public int maxDepth(TreeNode root) {
if(root == null){
return 0;
}
if(root.left == null && root.right == null){
return 1;
}
int leftDepth = maxDepth(root.left);
int rightDepth = maxDepth(root.right);
return 1 + (leftDepth > rightDepth ? leftDepth : rightDepth) ;
}
平衡二叉树判断
题目:在线OJ
思考:
- 先判断空树,或没有子树(只有根节点)—平衡
- 针对当前节点,求左右子树高度差,看是否 >1
- 若 <1,再递归判断该树的左右子树,看高度差是否 <1
即:一棵树是否平衡,先判断该树自己的左右子树高度差是否 ≤ 1,还要满足左右子树也平衡才可以判断该树是平衡树
画图分析:
代码实现:
public boolean isBalanced(TreeNode root) {
if(root == null){
return true;
}
if(root.left == null && root.right == null){
return true;
}
int leftDepth = maxDepth(root.left);
int rightDepth = maxDepth(root.right);
if(leftDepth - rightDepth > 1 || leftDepth - rightDepth < -1){
return false;
}
return isBalanced(root.left) && isBalanced(root.right);
}
对称二叉树
题目:在线OJ
思考:
判断一棵树是否对称,本质上就是判断该树的所有子树是否对称
- 先判断左右子树( A B )的根节点是否相同
- 判断 A.left 和 B.right 是否成镜像关系
- 判断 A.right 和 B.left 是否成镜像关系
画图分析:
代码实现:
public boolean isSymmetric(TreeNode root) {
if(root == null){
return true;
}
return isMirror(root.left,root.right);
}
public boolean isMirror(TreeNode t1,TreeNode t2){
if(t1 == null && t2 == null){
return true;
}
if(t1 == null || t2 == null){
return false;
}
if(t1.val != t2.val){
return false;
}
return isMirror(t1.left,t2.right) && isMirror(t1.right,t2.left);
}
进阶面试题
二叉树的遍历及构建
题目:在线OJ
思考:
画图分析:
代码实现:
public class BuildTreeDemo {
static class TreeNode{
public char val;
TreeNode left;
TreeNode right;
public TreeNode(char val) {
this.val = val;
}
}
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
while(scan.hasNext()){
String s = scan.next();
TreeNode root = build(s);
inOrder(root);
System.out.println();
}
}
private static void inOrder(TreeNode root) {
if(root == null){
return;
}
inOrder(root.left);
System.out.print(root.val+" ");
inOrder(root.right);
}
private static int index = 0;
private static TreeNode build(String s) {
index = 0;
return createTreePrevOrder(s);
}
private static TreeNode createTreePrevOrder(String s) {
char cur = s.charAt(index);
if(cur == '#'){
return null;
}
TreeNode root = new TreeNode(cur);
index++;
root.left = createTreePrevOrder(s);
index++;
root.right = createTreePrevOrder(s);
return root;
}
}
部分递归过程分析:
二叉树的分层遍历
题目:在线OJ
思考:
创建一个变量 result 来存放我们的结果,最后 return result (result 相当于一个二维数组,result 0 对应第0层节点,result 1 对应第1层节点…)
代码实现:
static List<List<Integer>> result = new ArrayList<>();
public List<List<Integer>> levelOrder(TreeNode root) {
result.clear();
if(root == null){
return null;
}
helper(root,0);
return result;
}
private void helper(TreeNode root, int level) {
if(level == result.size()){
result.add(new ArrayList<>());
}
result.get(level).add(root.val);
if(root.left != null){
helper(root.left,level + 1);
}
if(root.right != null){
helper(root.right,level + 1);
}
}
代码分析:
思考:
- 使用一个队列queue,先用来存放每一层的节点,并使用变量 level 来记录该层有几个元素
- 创建一个 list 来存放每一层节点,每遍历完一层,将每一层都入队列然后再出队列并将其移除,即:把队列里这一层的元素出队列,并将其加入到 list 中
- 判断左 / 右节点是否为空,来将下一层的元素加入到queue,队列为空,停止循环
代码实现:
public List<List<Integer>> levelOrder(TreeNode root){
List<List<Integer>> result = new ArrayList<>();
if(root == null){
return result;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.add(root);
while ( !queue.isEmpty()){
List<Integer> list = new ArrayList<>();
int level = queue.size();
for (int i = 0; i < level; i++) {
TreeNode cur = queue.poll();
list.add(cur.val);
if(cur.left != null){
queue.add(cur.left);
}
if(cur.right != null){
queue.add(cur.right);
}
}
result.add(list);
}
return result;
}
二叉树的最近公共祖先
题目:在线OJ
思考:
若从某个节点开始,后续遍历能把 p 和 q 都找到,说明该节点就是 p 和 q 的公共祖先 若从某个节点开始,后续遍历能把 p 和 q 都找到,并且 p 和 q 不在同一子树中,则当前节点就是 p 和 q 的最近公共祖先
代码实现:
private TreeNode lca = null;
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if(root == null){
return null;
}
findNode(root,p,q);
return lca;
}
private boolean findNode(TreeNode root, TreeNode p, TreeNode q) {
if(root == null){
return false;
}
int left = findNode(root.left,p,q) ? 1 : 0;
int right = findNode(root.right,p,q) ? 1 : 0;
int mid = (root == p || root == q) ? 1 : 0;
if(left + right + mid == 2){
lca = root;
}
return (left + right +mid) > 0;
}
思考:
- 在左 右子树查找是否包含 p,q,如果 p 和 q 不在同一子树中,那么此时的根节点就是最近公共祖先
- 如果左子树包含 p 和 q,那么到当前节点的左子树中查找,最近公共祖先在左子树里面
- 如果右子树包含 p 和 q,那么到当前节点的右子树中查找,最近公共祖先在右子树里面
代码实现:
public TreeNode lowestCommonAncestor2(TreeNode root, TreeNode p, TreeNode q) {
if (root == null || p == root || q == root) {
return root;
}
TreeNode left = lowestCommonAncestor(root.left, p, q);
TreeNode right = lowestCommonAncestor(root.right, p, q);
if (left != null && right != null) {
return root;
}
return left == null ? right : left;
}
二叉搜索树与双向链表
题目:在线OJ①,在线OJ②
思考:
首先,我们要知道二叉搜索树的概念 二叉搜索树:是一种特殊的二叉树,对于树上的任意节点,它都满足:左子树中的所有节点都小于根节点,根节点又小于右子树中的所有节点 因此,若对一个二叉搜索树进行中序遍历,遍历结果就是一个有序数组
- 递归处理左子树,把左子树和当前节点连在一起
left 就是左子树这个链表的根节点 - 递归转换右子树,把当前节点和右子树连在一起
right 相当于链表中的 next - 最后返回链表的头节点
树中没有 next 和 prev,我们使用 right 指向下一个节点,left 指向上一个节点
代码实现:
public TreeNode Convert(TreeNode pRootOfTree) {
if(pRootOfTree == null){
return null;
}
if(pRootOfTree.left == null && pRootOfTree.right == null){
return pRootOfTree;
}
TreeNode left = Convert(pRootOfTree.left);
TreeNode leftTail = left;
while(leftTail != null && leftTail.right != null){
leftTail = leftTail.right;
}
if (left != null){
leftTail.right = pRootOfTree;
pRootOfTree.left = leftTail;
}
TreeNode right = Convert(pRootOfTree.right);
if (right != null){
right.left = pRootOfTree;
pRootOfTree.right = right;
}
return left == null ? pRootOfTree : left;
}
从前序与中序遍历序列构造二叉树
题目:在线OJ
思考:
先序遍历:第一个访问的节点一定是根节点,后面的节点就是左子树 / 右子树的根节点 中序遍历:第一个访问的节点是树的最左侧节点,左子树一定在根节点左侧,右子树一定在根节点右侧
由以上两条规律,可以得出基本思路:
- 根据先序遍历结果找到当前树的根节点
- 拿到这个根节点到中序遍历结果中查找,找到其左 / 右子树
- 再根据划分结果来构造树
代码实现:
private int index = 0;
public TreeNode buildTree(int[] preorder, int[] inorder) {
index = 0;
return buildTreeHelper(preorder,inorder,0,inorder.length);
}
private TreeNode buildTreeHelper(int[] preorder, int[] inorder, int left, int right) {
if(left >= right){
return null;
}
if(left >= preorder.length){
return null;
}
TreeNode root = new TreeNode(preorder[index]);
index++;
int pos = find(inorder,left,right,root.val);
root.left = buildTreeHelper(preorder,inorder,left,pos);
root.right = buildTreeHelper(preorder,inorder,pos+1,right);
return root;
}
private int find(int[] inorder,int left,int right,int toFind){
for (int i = left; i < right; i++) {
if(inorder[i] == toFind){
return i;
}
}
return -1;
}
从中序与后序遍历序列构造二叉树
题目:在线OJ
思考:
与上一题思路一样 中序遍历:第一个访问的节点是树的最左侧节点,左子树一定在根节点左侧,右子树一定在根节点右侧 (左根右) 后序遍历:最后一个访问的节点一定是根节点 (左右根)
思路:
- 将后续遍历结果逆置,就会变成一个镜像先序遍历结果 (根 右 左)
- 根据后序逆置遍历结果 找到当前树的根节点
- 拿到这个根节点到中序遍历结果中查找,找到其左 / 右子树
再根据划分结果来构造树
根据二叉树创建字符串
题目:在线OJ
思考:
此处需要注意需要省略的括号:
- 若一个树左右子树都为空,就不需要把左右子树用 ( ) 表示
- 若一个树的左子树为空,右子树非空,需要把左子树用 ( ) 占位,且不能省略括号
- 若一个属的左子树非空,右子树为空,则可以省略 ( )
代码实现:
private StringBuilder sb = new StringBuilder();
public String tree2str(TreeNode root) {
if(root == null){
return "";
}
helper2(root);
sb.deleteCharAt(0);
sb.deleteCharAt(sb.length() - 1);
return sb.toString();
}
private void helper2(TreeNode root) {
if(root == null){
return;
}
sb.append("(");
sb.append(root.val);
helper2(root.left);
if(root.left == null && root.right != null){
sb.append("()");
}
helper2(root.right);
sb.append(")");
}
|