| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 数据结构与算法 -> 【2021 数学建模“华为杯”】B题:空气质量预报二次建模 2 方案设计附实现代码 -> 正文阅读 |
|
[数据结构与算法]【2021 数学建模“华为杯”】B题:空气质量预报二次建模 2 方案设计附实现代码 |
相关链接【数学建模国赛】2021 B题:空气质量预报二次建模 1 赛后总结与分析 【2021 数学建模“华为杯”】B题:空气质量预报二次建模 2 方案设计附实现代码 【2021数学建模“华为杯”】B 题60页论文 PDF付费下载 1 赛题的详细分析(必看)【数学建模国赛】2021 B题:空气质量预报二次建模 1 赛后总结与分析 2 方案的设计2.1 问题一Matlab 代码实现,见github 2.2 问题二(1)数据预处理 缺失值的统计和异常值的统计,并用knn最邻近均值插值进行填充。算法步骤如下。也考虑过线性插值,但是线性插值,需要依靠左右相邻的元素来进行计算,但是数据存在大量的连续缺失值,就不适用了。具体代码实现见github 插值填充 python实现算法如下,完整实现,转到python 实现插值
(2)特征的选择 在前面说过,分析过选择了每种污染物浓度的IAQI作为聚类算法的特征。为了再验证一遍,可以先计算法一下各个污染物浓度、各个气象条件与AQI关联度,选择关联度较高的作为聚类的特征。 (3)聚类算法 聚类需要初始化一个K值,K值的选择是一个超参数。根据查阅资料,中国的气象天气大致分为6类,那我们的K值就选择了3、4、5、6作为相互对比。评价聚类效果的标准采用Calinski-Harabas得分。下图中,得分越高代表聚类效果越佳。聚类算法就很多了,比如我都尝试过minibatchKmeans、Kmeans3D、Kmeans、DBSCAN、AgglomerativeClustering、Birch。但效果都不如Kmeans和minibatchKmeans。最终就选择了这两种算法,聚类的效果差不多,K值最终选择是3。具体实现,查看代码github 聚类算法实现
(3)气象特征分析 对于题目中文的分析最终分类的气象条件特征,其实就是对分类的每一种类别进行污染物浓度、温度、湿度、气压、风速、风向等特征分析。比如下图中,纵坐标是AQI,第一类的气象条件、第二类的气象条件、第三类的气象条件的AQI等级都不一样。每种气象条件对应的空气指数都不一样,第一类,指数最高,第三类,指数最低,这种气象条件带来的空气质量最好。 再比如如下图,气象类别与温度的关系,还是有细微的差别的,第一类的气温偏高,第二类的气温温差大,第三类的温差较小,温度居中。这些都是这些气象条件的特征,此外还有湿度、气压、风向、风速等其他特征,不在这一一陈述。 如果想问如何做出的上面两个这种聚类结果与特征的关系图,其实就是取每一种聚类的结果的下标,用不同的颜色绘制散点。MATLAB实现 2.3 问题三LSTM 多变量时间序列实现空气质量预测-python代码实现 (1)模型的选择 已经明确了这是一个多变量的时间序列预测问题。为什么是多变量,是因为需要同时要将多个特征作为模型的输入,而不是想简单的单个特征时间序列的预测,就只有一个输入和输出。比如销售量的预测,根据历年销售量就可以预测出,下个时间的销售量。在此题中,需要考虑6种污染物浓度、15种气象条件。这些特征之间并不是相互独立的,而是相关联的,只能一起输入模型中。时间序列的预测模型有很多,比如传统时序建模方法的ARMA/ARIMA等线性模型、利用时间特征做线性回归模型、时间序列分解模型、xgboost/LSTM模型/时间卷积神经网络模型等。 (2)LSTM模型的设计 题目要求,是用一个通用的数学模型是来分别预报A、B、C点的数据。此处只分析检测点A,其他两个点,同样的原理。数据预测的目的未来三天7月13至7月15号的数据。提供的数据有三个,A点每小时预报数据(25W条,最后采集时间是7月12号,有21列属性)、A点每个小时实测数据(19W条,最后采集时间12号,有11列属性)、A点每天实测数据(819条,最后采集时间是7月12号,有6列属性)。此处应该建立三个LSTM神经网络,每个网络输入是前三天的数据,输出是后三天的数据,输入大小时每个数据中所有属性列,输出大小和输入大小相同。比如“A点每小时的实测数据”中有11列,分别是SO2、NO2、PM10、PM2.5、O3、CO、温度、湿度、气压、风速、风向。则对应网络模型的输入输出大小是11。而其他两个文件的属性列分别是21和6,对应的模型输入输出大小也应该是21和6。在LSTM中需要设定预测的步长和预测的时间长短。对于所有数据,我选择的时间步长是6天,预测的天数是3,意思是用前3天数据预测后3天的数据,如果设定为6和2 的话,就是用前4天的数据预测后2天的数据。注意,有两个数据的采集单位是小时,那时间步长和预测天数相应是144小时和72小时。 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-g8k3dQ7t-1634745128721)(/Users/mgege007/Desktop/IMG/6.png)] (3)模型的训练和预测 监测点A就需要用三个数据训练模型。每小时的数据,模型输出是72小时的72条数据,需要合并成三天3条的数据,其中合并过程是除了O3外,全是取算术平均,而O3用8小时滑动平均合并。三个模型的输出再取平均,得到最终的三天预报数据。A点的每小时预报数据,拟合效果如下。三个检测点,总共需要训练9个模型。 (4)模型检验与实现 时间序列 模型检验主要由RMSE、MAE、MAPE、R、IA。相应是计算方法如下 2.4 问题四略。。 |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 | -2025/1/8 4:31:02- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |