左神算法-基础01
认识时间复杂度
常数时间的操作 :一个操作如果和样本的数据量没有关系,每次都是固定时间内完成的操作,叫做常数操作。
时间复杂度为一个算法流程中,常数操作数量的一个指标。常用O(读作big O)来表示。具体来说,先要对一个算法流程非常熟悉,然后去写出这个算法流程中,发生了多少常数操作,进而总结出常数操作数量的表达式。
在表达式中,只要高阶项,不要低阶项,也不要高阶项的系数,剩下的部分如果为f(N),那么时间复杂度为O(f(N))。
评价一个算法流程的好坏,先看时间复杂度的指标,然后再分析不同数据样本下的实际运行 时间,也就是**“常数项时间”。**
选择排序、冒泡排序细节的讲解与复杂度分析
时间复杂度O(N^2),额外空间复杂度O(1)
public static void selectionSort(int[] arr) {
if (arr == null || arr.length < 2) {
return;
}
for (int i = 0; i < arr.length - 1; i++) {
int minIndex = i;
for (int j = i + 1; j < arr.length; j++) {
minIndex = arr[j] < arr[minIndex] ? j : minIndex;
}
swap(arr, i, minIndex);
}
}
public static void swap(int[] arr, int i, int j) {
int tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
public static void bubbleSort(int[] arr) {
if (arr == null || arr.length < 2) {
return;
}
for (int e = arr.length - 1; e > 0; e--) {
for (int i = 0; i < e; i++) {
if (arr[i] > arr[i + 1]) {
swap(arr, i, i + 1);
}
}
}
}
public static void swap(int[] arr, int i, int j) {
arr[i] = arr[i] ^ arr[j];
arr[j] = arr[i] ^ arr[j];
arr[i] = arr[i] ^ arr[j];
}
插入排序细节的讲解与复杂度分析
时间复杂度O(N^2),额外空间复杂度O(1)
算法流程按照最差情况来估计时间复杂度
public static void insertionSort(int[] arr) {
if (arr == null || arr.length < 2) {
return;
}
for (int i = 1; i < arr.length; i++) {
for (int j = i - 1; j >= 0 && arr[j] > arr[j + 1]; j--) {
swap(arr, j, j + 1);
}
}
}
public static void swap(int[] arr, int i, int j) {
arr[i] = arr[i] ^ arr[j];
arr[j] = arr[i] ^ arr[j];
arr[i] = arr[i] ^ arr[j];
}
二分法的详解与扩展
1)在一个有序数组中,找某个数是否存在
2)在一个有序数组中,找>=某个数最左侧的位置
3)局部最小值问题
public static boolean exist(int[] sortedArr, int num) {
if (sortedArr == null || sortedArr.length == 0) {
return false;
}
int L = 0;
int R = sortedArr.length - 1;
int mid = 0;
while (L < R) {
mid = L + ((R - L) >> 1);
if (sortedArr[mid] == num) {
return true;
} else if (sortedArr[mid] > num) {
R = mid - 1;
} else {
L = mid + 1;
}
}
return sortedArr[L] == num;
}
public static int nearestIndex(int[] arr, int value) {
int L = 0;
int R = arr.length - 1;
int index = -1;
while (L < R) {
int mid = L + ((R - L) >> 1);
if (arr[mid] >= value) {
index = mid;
R = mid - 1;
} else {
L = mid + 1;
}
}
return index;
}
public static int getLessIndex(int[] arr) {
if (arr == null || arr.length == 0) {
return -1;
}
if (arr.length == 1 || arr[0] < arr[1]) {
return 0;
}
if (arr[arr.length - 1] < arr[arr.length - 2]) {
return arr.length - 1;
}
int left = 1;
int right = arr.length - 2;
int mid = 0;
while (left < right) {
mid = (left + right) / 2;
if (arr[mid] > arr[mid - 1]) {
right = mid - 1;
} else if (arr[mid] > arr[mid + 1]) {
left = mid + 1;
} else {
return mid;
}
}
return left;
}
异或运算的性质与扩展
- 0^N == N N^N == 0
- 异或运算满足交换律和结合率
- 不用额外变量交换两个数
- 一个数组中有一种数出现了奇数次,其他数都出现了偶数次,怎么找到这一个数
- 一个数组中有两种数出现了奇数次,其他数都出现了偶数次,怎么找到这两个数
public static void printOddTimesNum1(int[] arr) {
int eO = 0;
for (int cur : arr) {
eO ^= cur;
}
System.out.println(eO);
}
public static void printOddTimesNum2(int[] arr) {
int eO = 0, eOhasOne = 0;
for (int curNum : arr) {
eO ^= curNum;
}
int rightOne = eO & (~eO + 1);
for (int cur : arr) {
if ((cur & rightOne) != 0) {
eOhasOne ^= cur;
}
}
System.out.println(eOhasOne + " " + (eO ^ eOhasOne));
}
对数器的概念和使用
- 有一个你想要测的方法a
- 实现复杂度不好但是容易实现的方法b
- 实现一个随机样本产生器
- 把方法a和方法b跑相同的随机样本,看看得到的结果是否一样。
- 如果有一个随机样本使得比对结果不一致,打印样本进行人工干预,改对方法a 或者方法b
- 当样本数量很多时比对测试依然正确,可以确定方法a已经正确。
public static void comparator(int[] arr) {
Arrays.sort(arr);
}
public static int[] generateRandomArray(int maxSize, int maxValue) {
int[] arr = new int[(int) ((maxSize + 1) * Math.random())];
for (int i = 0; i < arr.length; i++) {
arr[i] = (int) ((maxValue + 1) * Math.random()) - (int) (maxValue * Math.random());
}
return arr;
}
public static int[] copyArray(int[] arr) {
if (arr == null) {
return null;
}
int[] res = new int[arr.length];
for (int i = 0; i < arr.length; i++) {
res[i] = arr[i];
}
return res;
}
public static boolean isEqual(int[] arr1, int[] arr2) {
if ((arr1 == null && arr2 != null) || (arr1 != null && arr2 == null)) {
return false;
}
if (arr1 == null && arr2 == null) {
return true;
}
if (arr1.length != arr2.length) {
return false;
}
for (int i = 0; i < arr1.length; i++) {
if (arr1[i] != arr2[i]) {
return false;
}
}
return true;
}
public static void printArray(int[] arr) {
if (arr == null) {
return;
}
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
}
public static void main(String[] args) {
int testTime = 500000;
int maxSize = 100;
int maxValue = 100;
boolean succeed = true;
for (int i = 0; i < testTime; i++) {
int[] arr1 = generateRandomArray(maxSize, maxValue);
int[] arr2 = copyArray(arr1);
insertionSort(arr1);
comparator(arr2);
if (!isEqual(arr1, arr2)) {
succeed = false;
break;
}
}
System.out.println(succeed ? "Nice!" : "Fucking fucked!");
int[] arr = generateRandomArray(maxSize, maxValue);
printArray(arr);
insertionSort(arr);
printArray(arr);
}
剖析递归行为和递归行为时间复杂度的估算
用递归方法找一个数组中的最大值,系统上到底是怎么做的?
master公式的使用
T(N) = a*T(N/b) + O(N^d)
- log(b,a) > d -> 复杂度为O(N^log(b,a))
- log(b,a) = d -> 复杂度为O(N^d * logN)
- log(b,a) < d -> 复杂度为O(N^d)
|