IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> ConcurrentHashMap源码理解——第一篇 -> 正文阅读

[数据结构与算法]ConcurrentHashMap源码理解——第一篇

ConcurrentHashMap源码理解——第一篇

ConcurrentHashMap东西太多了,这一篇先说说它的数据结构和放元素的过程!
源码依赖于jdk1.8版本

数据结构

先给出结论:数组+链表+红黑树
首先我们先看看它有哪些属性,以方便后面的理解。

/* ---------------- Fields -------------- */

/**
* The array of bins. Lazily initialized upon first insertion.
* Size is always a power of two. Accessed directly by iterators.
* 这是保存数据用的数组。还说只在插入第一个元素时初始化,数组的大小还总是2的幂次方。
* 能看出数组和链表了!红黑树呢?
*/
transient volatile Node<K,V>[] table;

/**
* The next table to use; non-null only while resizing.
* 扩容时用的,只有扩容时才不等于null。
*/
private transient volatile Node<K,V>[] nextTable;

/**
* Base counter value, used mainly when there is no contention,
* but also as a fallback during table initialization
* races. Updated via CAS.
*/
private transient volatile long baseCount;

/**
* Table initialization and resizing control.  When negative, the
* table is being initialized or resized: -1 for initialization,
* else -(1 + the number of active resizing threads).  Otherwise,
* when table is null, holds the initial table size to use upon
* creation, or 0 for default. After initialization, holds the
* next element count value upon which to resize the table.
* 控制数组变化的,-1表示正在初始化,-n表示正在扩容,
* 否则当 table 为空时,保存初始容量(new的时候把初始容量赋给它),或默认为 0。 
* 初始化以后保存下次扩容的阈值
*/
private transient volatile int sizeCtl;

/**
* The next table index (plus one) to split while resizing.
* 扩容后从哪个索引开始迁移元素
*/
private transient volatile int transferIndex;

/**
* Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
*/
private transient volatile int cellsBusy;

/**
* Table of counter cells. When non-null, size is a power of 2.
* 
*/
private transient volatile CounterCell[] counterCells;

还有一些常量也会用到

/* ---------------- Constants -------------- */

    /**
     * The largest possible table capacity.  This value must be
     * exactly 1<<30 to stay within Java array allocation and indexing
     * bounds for power of two table sizes, and is further required
     * because the top two bits of 32bit hash fields are used for
     * control purposes.
     * 这个就是数组的最大值
     */
    private static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * The default initial table capacity.  Must be a power of 2
     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
     * 默认数组的初始大小
     */
    private static final int DEFAULT_CAPACITY = 16;

    /**
     * The largest possible (non-power of two) array size.
     * Needed by toArray and related methods.
     * 数组的大小,map转成数组时用的。至于减8是为了空出数组的一些元数据需要的空间。
     * 数组不像引用对象那样有对应的class对象,class对象还有一些属于自身的信息呢,
     * 那数组也得有啊,但是数组有没有class对象(实际上数组的getclass()返回的是元素的class对象,
     * getClass().getComponentType()方法的解释是:
     * 如果class对象代表的是一个数组返回元素的class对象否则返回null)
     */
    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

    /**
     * The default concurrency level for this table. Unused but
     * defined for compatibility with previous versions of this class.
     * 并发级别。不知道干啥的,但是用在序列化方法上
     */
    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;

    /**
     * The load factor for this table. Overrides of this value in
     * constructors affect only the initial table capacity.  The
     * actual floating point value isn't normally used -- it is
     * simpler to use expressions such as {@code n - (n >>> 2)} for
     * the associated resizing threshold.
     * 负载因子,表示元素数量达到数组的0.75时开始扩容
     */
    private static final float LOAD_FACTOR = 0.75f;

    /**
     * The bin count threshold for using a tree rather than list for a
     * bin.  Bins are converted to trees when adding an element to a
     * bin with at least this many nodes. The value must be greater
     * than 2, and should be at least 8 to mesh with assumptions in
     * tree removal about conversion back to plain bins upon
     * shrinkage.
     * 树化阈值,表示链表的长度达到8时转化成红黑树
     */
    static final int TREEIFY_THRESHOLD = 8;

    /**
     * The bin count threshold for untreeifying a (split) bin during a
     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
     * most 6 to mesh with shrinkage detection under removal.
     * 树退化阈值,表示链表的长度达到6时回退到链表
     */
    static final int UNTREEIFY_THRESHOLD = 6;

    /**
     * The smallest table capacity for which bins may be treeified.
     * (Otherwise the table is resized if too many nodes in a bin.)
     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
     * conflicts between resizing and treeification thresholds.
     * 最小树容量,树化的时候再看啥意思吧
     */
    static final int MIN_TREEIFY_CAPACITY = 64;

    /**
     * Minimum number of rebinnings per transfer step. Ranges are
     * subdivided to allow multiple resizer threads.  This value
     * serves as a lower bound to avoid resizers encountering
     * excessive memory contention.  The value should be at least
     * DEFAULT_CAPACITY.
     * 最小迁移步长
     */
    private static final int MIN_TRANSFER_STRIDE = 16;

    /**
     * The number of bits used for generation stamp in sizeCtl.
     * Must be at least 6 for 32bit arrays.
     * 什么玩意
     */
    private static int RESIZE_STAMP_BITS = 16;

    /**
     * The maximum number of threads that can help resize.
     * Must fit in 32 - RESIZE_STAMP_BITS bits.
     * 可以帮助调整大小的最大线程数。必须符合(32-RESIZE_STAMP_BITS)位
     */
    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;

    /**
     * The bit shift for recording size stamp in sizeCtl.
     * 不懂
     */
    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;

    /*
     * Encodings for Node hash fields. See above for explanation.
     */
    static final int MOVED     = -1; // hash for forwarding nodes 节点迁移的标记
    static final int TREEBIN   = -2; // hash for roots of trees 
    static final int RESERVED  = -3; // hash for transient reservations
    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash

    /** Number of CPUS, to place bounds on some sizings */
    static final int NCPU = Runtime.getRuntime().availableProcessors();

    /** For serialization compatibility. */ 兼容jdk1.8以前的分段锁
    private static final ObjectStreamField[] serialPersistentFields = {
        new ObjectStreamField("segments", Segment[].class),
        new ObjectStreamField("segmentMask", Integer.TYPE),
        new ObjectStreamField("segmentShift", Integer.TYPE)
    };

put过程

从下面的一段代码开始说起

 	ConcurrentHashMap<Integer, Integer> concurrentHashMap = new ConcurrentHashMap<>(10);
    for (int i = 0; i < 12; i++) {
        concurrentHashMap.put(i, i);
    }

new ConcurrentHashMap<>(10),通过源码看到只要指定了了初始容量,最总的初始容量一定会被变成大于它的最小2的幂次方,除非指定的容量大于了最大容量(MAXIMUM_CAPACITY)的一半。例如:指定了10,但是最终的初始化容量会是24=16。
以下是源码(篇幅太长,我把注释删了):

    public ConcurrentHashMap() {
    }

    public ConcurrentHashMap(int initialCapacity) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException();
        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
                   MAXIMUM_CAPACITY :
                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
        this.sizeCtl = cap;
    }

    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
        this.sizeCtl = DEFAULT_CAPACITY;
        putAll(m);
    }

    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
        this(initialCapacity, loadFactor, 1);
    }
    
    public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
            initialCapacity = concurrencyLevel;   // as estimated threads
        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
            MAXIMUM_CAPACITY : tableSizeFor((int)size);
        this.sizeCtl = cap;
    }
  
	/**
     * Returns a power of two table size for the given desired capacity.
     * 为给定的所需容量返回2的幂次方大小的数组。
     * See Hackers Delight, sec 3.2
     */
    private static final int tableSizeFor(int c) {
        int n = c - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

从以上代码中也能看到sizeCtl的大小被设置成了初始容量。

接下来进入第一次put:
我们先大概了解一次put的大体过程,再说细节

在这里插入图片描述
以下是源码:

    public V put(K key, V value) {
        return putVal(key, value, false);
    }

    final V putVal(K key, V value, boolean onlyIfAbsent) {
    	// ConcurrentHashMap不能存储null的键值对
        if (key == null || value == null) throw new NullPointerException();
        // hash扰动函数,再算一次hash值,尽可能避免hash冲突
        int hash = spread(key.hashCode());
        //链表大小
        int binCount = 0;
        // 无线循环的处理放入逻辑,知道放入成功,每次循环可能只处理了一部分逻辑。
        for (Node<K,V>[] tab = table;;) {
            Node<K,V> f; int n, i, fh;
            // 如果没初始化,就初始化数组
            if (tab == null || (n = tab.length) == 0)
            	// 见下方initTable()的注释
                tab = initTable();
             // (n - 1)&hash计算放置的位置,如果i位置没数据,就CAS放进去
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
                if (casTabAt(tab, i, null,
                             new Node<K,V>(hash, key, value, null)))
                    break;                   
            }
            // 如果当前节点的hash是-1(MOVED就是-1),就帮助迁移,针对的是多线程
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else {
                V oldVal = null;
                // 锁定当前节点,此时已经出现hash冲突。
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                    	// 如果是链表,就按照链表的形式增加节点
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                // 如果放的节点已经存在就跳过或是覆盖
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    //是否用新值覆盖旧值
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node<K,V> pred = e;
                                // 插入尾部
                                if ((e = e.next) == null) {
                                    pred.next = new Node<K,V>(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }
                        // 如果是树节点
                        else if (f instanceof TreeBin) {
                            Node<K,V> p;
                            binCount = 2;
                            // 如果创建了一个新的节点就返回null,否则返回key对应的节点
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) {
                	// 如果链表大小达到了阈值就树化
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                     // 如果有旧值就直接返回,不用扩容
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        // 元素容量计数器增加
        addCount(1L, binCount);
        return null;
    }

	private final Node<K,V>[] initTable() {
        Node<K,V>[] tab; int sc;
        // 一个线程初始化就行了,其它线程自选等待
        while ((tab = table) == null || tab.length == 0) {
        	// 如果sc小于0证明有线程正在初始化,让出CPU
            if ((sc = sizeCtl) < 0)
                Thread.yield();
            // CAS锁定sizeCtl。
            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                try {
                	// 双重检查
                    if ((tab = table) == null || tab.length == 0) {
                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                        @SuppressWarnings("unchecked")
                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                        table = tab = nt;
                        // 计算下次扩容的阈值  n - (n >>> 2) <=> n-n*(1-0.75)
                        sc = n - (n >>> 2);
                    }
                } finally {
                    sizeCtl = sc;
                }
                break;
            }
        }
        return tab;
    }

	private final void addCount(long x, int check) {
        CounterCell[] as; long b, s;
        // 这一部分应该是多线程在协助迁移,我也没看懂
        if ((as = counterCells) != null ||
        	// 更新元素数量的最新值
            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
            CounterCell a; long v; int m;
            boolean uncontended = true;
            if (as == null || (m = as.length - 1) < 0 ||
                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
                !(uncontended =
                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
                fullAddCount(x, uncontended);
                return;
            }
            if (check <= 1)
                return;
            s = sumCount();
        }
        //是否需要扩容
        if (check >= 0) {
            Node<K,V>[] tab, nt; int n, sc;
             //判断是否符合扩容条件
            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
                   (n = tab.length) < MAXIMUM_CAPACITY) {
                int rs = resizeStamp(n);
                if (sc < 0) {
                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                        transferIndex <= 0)
                        break;
                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                        transfer(tab, nt);
                }
                //如果锁定了SIZECTL表明此时有线程正在扩容
                else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                             (rs << RESIZE_STAMP_SHIFT) + 2))
                    // 扩容函数
                    transfer(tab, null);
                //计算所有线程的总元素数量??
                s = sumCount();
            }
        }
    }
    
    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
        int n = tab.length, stride;
        // 每个线程会从某个索引处迁移数据,这是要迁移的步长
        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
            stride = MIN_TRANSFER_STRIDE;
        // 如果临时数组为空,创建
        if (nextTab == null) {           
            try {
                @SuppressWarnings("unchecked")
                //扩容两倍
                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
                nextTab = nt;
            } catch (Throwable ex) {      // try to cope with OOME
                sizeCtl = Integer.MAX_VALUE;
                return;
            }
            //赋值给临时数组
            nextTable = nextTab;
            //开始迁移的起始索引
            transferIndex = n;
        }
        int nextn = nextTab.length;
        //目标转移节点,如果从这个节点进入,就会进入新的数组中
        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
        boolean advance = true;
        boolean finishing = false; 
        //遍历每一个数组元素,i起始索引,bound迁移元素的终点索引
        for (int i = 0, bound = 0;;) {
            Node<K,V> f; int fh;
            //寻找到下一个要迁移的元素
            while (advance) {
                int nextIndex, nextBound;
                // 倒序迁移,
                if (--i >= bound || finishing)
                    advance = false;
                else if ((nextIndex = transferIndex) <= 0) {
                    i = -1;
                    advance = false;
                }
                //CAS确定下一个迁移元素
                else if (U.compareAndSwapInt
                         (this, TRANSFERINDEX, nextIndex,
                          nextBound = (nextIndex > stride ?
                                       nextIndex - stride : 0))) {
                    bound = nextBound;
                    i = nextIndex - 1;
                    advance = false;
                }
            }
            if (i < 0 || i >= n || i + n >= nextn) {
                int sc;
                if (finishing) {
                    nextTable = null;
                    table = nextTab;
                    sizeCtl = (n << 1) - (n >>> 1);
                    return;
                }
                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                        return;
                    finishing = advance = true;
                    i = n; // recheck before commit
                }
            }
            //在原数组的i位置放上转移节点,后续的操作就会在新数组上操作
            else if ((f = tabAt(tab, i)) == null)
                advance = casTabAt(tab, i, null, fwd);
            //fwd是转移节点,hash是-1放在原数组上,新来的线程如果发现操作的节点的hash是-1
            //就会帮忙迁移,这里是-1表示已经处理了
            else if ((fh = f.hash) == MOVED)
                advance = true; 
            else {
            	//准备迁移的节点
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        Node<K,V> ln, hn;
                        //链表的迁移方式
                        if (fh >= 0) {
                            int runBit = fh & n;
                            Node<K,V> lastRun = f;
                            for (Node<K,V> p = f.next; p != null; p = p.next) {
                            	// 计算迁移数据的hash值高位是1还是0
                                int b = p.hash & n;
                                if (b != runBit) {
                                    runBit = b;
                                    lastRun = p;
                                }
                            }
                            if (runBit == 0) {
                                ln = lastRun;
                                hn = null;
                            }
                            else {
                                hn = lastRun;
                                ln = null;
                            }
                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
                                int ph = p.hash; K pk = p.key; V pv = p.val;
                                if ((ph & n) == 0)
                                    ln = new Node<K,V>(ph, pk, pv, ln);
                                else
                                    hn = new Node<K,V>(ph, pk, pv, hn);
                            }
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                        //树的迁移方式
                        else if (f instanceof TreeBin) {
                            TreeBin<K,V> t = (TreeBin<K,V>)f;
                            TreeNode<K,V> lo = null, loTail = null;
                            TreeNode<K,V> hi = null, hiTail = null;
                            int lc = 0, hc = 0;
                            for (Node<K,V> e = t.first; e != null; e = e.next) {
                                int h = e.hash;
                                TreeNode<K,V> p = new TreeNode<K,V>
                                    (h, e.key, e.val, null, null);
                                if ((h & n) == 0) {
                                    if ((p.prev = loTail) == null)
                                        lo = p;
                                    else
                                        loTail.next = p;
                                    loTail = p;
                                    ++lc;
                                }
                                else {
                                    if ((p.prev = hiTail) == null)
                                        hi = p;
                                    else
                                        hiTail.next = p;
                                    hiTail = p;
                                    ++hc;
                                }
                            }
                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                    }
                }
            }
        }
    }

也不知道写的好不好容易理解吗?有意见尽管提,谢谢!

课外知识

这几篇容我先酝酿一下子
HashMap的树化为什么是红黑树.
ConcurrentHashMap的链表数据迁移解释.
ConcurrentHashMap和HashMap的二义性问题.
HashMap的容量为什么必须是2的幂次方.

  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2021-10-25 12:43:47  更:2021-10-25 12:45:25 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/8 4:05:54-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码