335.路径交叉
题目描述
路径交叉
思路:分类讨论
首先计算distance长度,如果distance小于4,则必然不会相交,返回false;如果distance长度大于等于4,才开始分类讨论。
- distance[i]与distance[i-3]相交:此时必定满足
d
i
s
t
a
n
c
e
[
i
]
>
=
d
i
s
t
a
n
c
e
[
i
?
2
]
distance[i]>=distance[i-2]
distance[i]>=distance[i?2],同时满足
d
i
s
t
a
n
c
e
[
i
?
1
]
<
=
d
i
s
t
a
n
c
e
[
i
?
3
]
distance[i-1]<=distance[i-3]
distance[i?1]<=distance[i?3]。distance[i]不一定是向东移动的边,可以是任意方向的边,此时矩形发生旋转,但不影响相交,其他情况也同理。
- distance[i]与distance[i-4]相交:此时必定满足
d
i
s
t
a
n
c
e
[
i
?
1
]
=
d
i
s
t
a
n
c
e
[
i
?
3
]
distance[i-1]=distance[i-3]
distance[i?1]=distance[i?3],同时满足
d
i
s
t
a
n
c
e
[
i
]
+
d
i
s
t
a
n
c
e
[
i
?
4
]
>
=
d
i
s
t
a
n
c
e
[
i
?
2
]
distance[i]+distance[i-4]>=distance[i-2]
distance[i]+distance[i?4]>=distance[i?2]。
- distance[i]与distance[i-5]相交:此时必定满足
d
i
s
t
a
n
c
e
[
i
]
+
d
i
s
t
a
n
c
e
[
i
?
4
]
>
=
d
i
s
t
a
n
c
e
[
i
?
2
]
distance[i]+distance[i-4]>=distance[i-2]
distance[i]+distance[i?4]>=distance[i?2],同时满足
d
i
s
t
a
n
c
e
[
i
?
1
]
<
=
d
i
s
t
a
n
c
e
[
i
?
3
]
distance[i-1]<=distance[i-3]
distance[i?1]<=distance[i?3]和
d
i
s
t
a
n
c
e
[
i
?
2
]
>
d
i
s
t
a
n
c
e
[
i
?
4
]
distance[i-2]>distance[i-4]
distance[i?2]>distance[i?4]以及
d
i
s
t
a
n
c
e
[
i
?
1
]
+
d
i
s
t
a
n
c
e
[
i
?
5
]
>
=
d
i
s
t
a
n
c
e
[
i
?
3
]
distance[i-1]+distance[i-5]>=distance[i-3]
distance[i?1]+distance[i?5]>=distance[i?3]。
Java实现
class Solution {
public boolean isSelfCrossing(int[] distance) {
int l = distance.length;
if (l < 4) return false;
for (int i=3; i < l; i++) {
if ((distance[i] >= distance[i-2]) && (distance[i-1] <= distance[i-3])) return true;
if (i >= 4 && (distance[i-1] == distance[i-3]) && (distance[i] + distance[i-4] >= distance[i-2])) return true;
if (i >= 5 && (distance[i] + distance[i-4] >= distance[i-2]) && (distance[i-1] <= distance[i-3]) && (distance[i-2] > distance[i-4]) && (distance[i-1] + distance[i-5] >= distance[i-3])) return true;
}
return false;
}
}
Python实现
class Solution:
def isSelfCrossing(self, distance: List[int]) -> bool:
l = len(distance)
if l <= 3:
return False
for i in range(3, l):
if distance[i] >= distance[i-2] and distance[i-1] <= distance[i-3]:
return True
if i >= 4 and distance[i-1] == distance[i-3] and distance[i] + distance[i-4] >= distance[i-2]:
return True
if i >= 5 and distance[i-2] - distance[i-4] >= 0 and distance[i] >= distance[i-2] - distance[i-4] and distance[i-1] >= distance[i-3] - distance[i-5] and distance[i-1] <= distance[i-3]:
return True
return False
|