| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 数据结构与算法 -> 一文搞懂动态规划 -> 正文阅读 |
|
[数据结构与算法]一文搞懂动态规划 |
前言大家好,我是bigsai,好久不见,甚是想念(天天想念)! 很久前就有小伙伴被动态规划所折磨,确实,很多题动态规划确实太难看出了了,甚至有的题看了题解理解起来都费劲半天。 动态规划的范围虽然确实是很广很难,但是从整个动态规划出现的频率来看,这几种基础的动态规划理解容易,学习起来压力不大,并且出现频率非常高。 这几个常见的动态规划有:连续子数组最大和,子数组的最大乘积,最长递增子序列(LIS),最长公共子序列(LCS),最长公共子串,最长公共子串,不同子序列。 什么是动态规划首先很多人问,何为动态规划?动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。通俗一点动态规划就是从下往上(从前向后)阶梯型求解数值。 那么动态规划和递归有什么区别和联系? 总的来说动态规划从前向后,递归从后向前,两者策略不同,并且一般动态规划效率高于递归。 不过都要考虑初始状态,上下层数据之间的联系。很多时候用动态规划能解决的问题,用递归也能解决不过很多时候效率不高可能会用到记忆化搜索。 不太明白? 就拿求解斐波那契额数列来说,如果直接用递归不优化,那么复杂度太多会进行很多重复的计算。 但是利用记忆化你可以理解为一层缓存,将求过的值存下来下次再遇到就直接使用就可以了。 实现记忆化搜索求斐波那契代码为:
而动态规划的方式你可以从前往后逻辑处理,从第三个开始每个dp都是前两个dp之和。
当然动态规划也能有很多空间优化,有些只用一次的值,你可以用一些变量去替代。有些二维数组很大也可以用一维数组交替替代。当然动态规划专题很大,有很多比如树形dp、状压dp、背包问题等等经常出现在竞赛中,能力有限这里就将一些出现笔试高频的动态规划! 连续子数组最大和给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。 示例:
dp的方法就是O(n)的方法。如果dp[i]表示以第i个结尾的最大序列和,而这个dp的状态方程为:
也不难解释,如果以前一个为截至的最大子序列和大于0,那么就连接本个元素,否则本个元素就自立门户。 实现代码为:
ps:有小伙伴问那求可以不连续的数组最大和呢?你好好想想枚举一下正的收入囊中,那个问题没意义的。 连续子数组最大乘积给你一个整数数组 nums ,请你找出数组中乘积最大的连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。 示例 :
连续子数组的最大乘积,这也是一道经典的动态规划问题,但是和普通动态规划又有点小不同。 如果数据中都是非负数,对于连续数组的最大乘积,那样处理起来和前面连续子数组最大和处理起来有些相似,要么和前面的叠乘,要么自立门户。
但是这里面的数据会出现负数,乘以一个负数它可能从最大变成最小,并且还有负负得正就又可能变成最大了。 这时候该怎么考虑呢? 容易,我们开两个dp,一个 动态方程也很容易
看一个过程就能理解明白,dpmin就是起到中间过度的作用,记录一些可能的负极值以防备用。结果还是dpmax中的值。 最长递增子序列最长递增子序列,也称为LIS,是出现非常高频的动态规划算法之一。这里对应力扣300 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。 子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。
对于最长递增子序列,如果不考虑动态规划的方法,使用暴力枚举其实还是比较麻烦的,因为你不知道遇到比前面元素大的是否要递增。 比如 1 10 3 11 4 5,这个序列不能选取1 10 11而1 3 4 5才是最大的,所以暴力枚举所有情况的时间复杂度还是非常高的。 如果我们采取动态规划的方法,创建的 状态转移方程为:
具体流程为: 实现代码为:
不过这道题还有一个优化,可以优化成O(nlogn)的时间复杂度。 我们用dp记录以 例如 2,3,9,5 …… 在前面最长的长度为3 我们愿意抛弃2,3,9 而全部使用2,3,5 。也就是对于一个值,我们希望这个值能更新以它为结尾的最长的序列的末尾值。 如果这个值更新不了最长的序列,那就尝试更新第二长的末尾值以防待用。例如 2,3,9,5,4,5 这个序列2,3,5更新2,3,9;然后2,3,4更新2,3,5 为最长的2,3,4,5做铺垫。 而这个思路的核心就是维护一个 实现代码为:
最长公共子序列最长公共子序列也成为LCS.出现频率非常高! 给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。 一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。 例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。 拿b c d d e和 a c e e d e举例,其的公共子串为c d e。如果使用暴力,复杂度太高会直接超时,就需要使用动态规划。两个字符串匹配,我们设立二维 这里核心就是要搞懂状态转移,分析 如果 如果 所以整个状态转移方程为:
实现代码为:
最长公共子串给定两个字符串str1和str2,输出两个字符串的最长公共子串。 例如 abceef 和a2b2cee3f的最长公共子串就是cee。公共子串是两个串中最长连续的相同部分。 如何分析呢? 和上面最长公共子序列的分析方式相似,要进行动态规划匹配,并且逻辑上处理更简单,只要当前i,j不匹配那么dp值就为0,如果可以匹配那么就变成 核心的状态转移方程为:
这里代码和上面很相似就不写啦,但是有个问题有的会让你输出最长字符串之类,你要记得用一些变量存储值。 不同子序列不同子序列也会出现,并且有些难度,前面这篇不同子序列问题分析讲的大家可以看看。 给定一个字符串 s 和一个字符串 t ,计算在 s 的子序列中 t 出现的个数。 字符串的一个 子序列 是指,通过删除一些(也可以不删除)字符且不干扰剩余字符相对位置所组成的新字符串。(例如,“ACE” 是 “ABCDE” 的一个子序列,而 “AEC” 不是) 示例 :
分析: 这题的思路肯定也是动态规划dp了, 但是有一点需要注意的就是在遍历s串中第i个字母的时候,遍历t串比较不能从左向右而必须从右向左。因为在遍历s串的第i个字符在枚举dp数组时候要求此刻数据是相对静止的叠加(即同一层次不能产生影响),而从左往右进行遇到相同字符会对后面的值产生影响。区别的话可以参考下图这个例子: 实现的代码为:
结语至此,简单的动态规划算是分享完了。 大部分简单动态规划还是有套路的,你看到一些数组问题、字符串问题很有可能就暗藏动态规划。动态规划的套路跟递归有点点相似,主要是找到状态转移方程,有时候考虑问题不能一步想的太多(想太多可能就把自己绕进去了),而动态规划就是要大家对数值上下转换计算需要了解其中关系。 对于复杂dp问题或者很多套一层壳确实很难看出来,但是掌握上面的常见dp问题和背包问题,就可以解决大部分动态规划问题啦(毕竟咱们不是搞竞赛遇到的还是偏简单或者中等难度的)。 原创不易,求个三连!最近,我把自己的原创文章整理成一本数据结构与算法pdf,一共218页会定期更新维护,关注我的公众号回复【 |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 | -2024/11/26 9:41:35- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |