IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> 图论BFS(Breath First Search)Algorithm广度优先搜索遍历空间平面网格图路径选择,networkx,Python -> 正文阅读

[数据结构与算法]图论BFS(Breath First Search)Algorithm广度优先搜索遍历空间平面网格图路径选择,networkx,Python

(1)在每个节点埋入一个parent指针,指向当前节点的前一个节点,通过串联起来从终点起的父节点,就构成了路径。

(2)图中打X的节点表明当前节点不可通行。

(3)网格中的节点最终被标记为红色且被淡红色粗线描出来的就是选的路。

import random

import networkx as nx
import matplotlib.pyplot as plt

WALKABLE = 'walkable'
PARENT = 'parent'
VISITED = 'visited'


def my_graph():
    M = 7
    N = 9
    G = nx.grid_2d_graph(m=M, n=N)
    pos = nx.spring_layout(G, iterations=100)

    nx.draw_networkx(G, pos=pos,
                     # labels=labels, #labels = dict(((i, j), 'Phil') for i, j in G.nodes())
                     font_size=8,
                     font_color='white',
                     node_color='green',
                     node_size=500,
                     width=1)

    START = (1, 1)  # (2, 2)
    GOAL = (M - 1 - 1, N - 1 - 1)

    # 0,随机生成障碍物点
    # 1,精心挑选的障碍物构成陷阱
    obstacle_mode = 0
    road_closed_nodes = []
    if obstacle_mode == 0:
        obstacle = 20  # 障碍物(断点、不可达点)数量
        road_closed_nodes = obstacle_nodes(G, START, GOAL, obstacle, M, N)
    elif obstacle_mode == 1:
        road_closed_nodes = dummy_nodes(G)

    nx.draw_networkx_nodes(
        G, pos,
        nodelist=road_closed_nodes,
        node_size=500,
        node_color="red",
        node_shape="x",
        # alpha=0.3,
        label='x'
    )

    bfs(G, START, GOAL)
    path = find_path_by_parent(G, START, GOAL)
    print('path', path)

    nx.draw_networkx_nodes(
        G, pos,
        nodelist=path,
        node_size=400,
        node_color="red",
        node_shape='o',
        # alpha=0.3,
        # label='NO'
    )

    # nx.draw_networkx_nodes(
    #     G, pos,
    #     nodelist=path,
    #     node_size=100,
    #     node_color="yellow",
    #     node_shape='*',
    #     # alpha=0.3,
    #     # label='NO'
    # )

    path_edges = []
    for i in range(len(path)):
        if (i + 1) == len(path):
            break
        path_edges.append((path[i], path[i + 1]))

    print('path_edges', path_edges)

    # 把path着色加粗重新描边
    nx.draw_networkx_edges(G, pos,
                           edgelist=path_edges,
                           width=8,
                           alpha=0.5,
                           edge_color="r")

    plt.axis('off')
    plt.show()


# 广度优先遍历搜索路径
def bfs(G, START, GOAL):
    for n in G.nodes():
        G.nodes[n][VISITED] = False

    print('G.nodes(data=True)', G.nodes(data=True))

    # 记录搜索路径
    search_path = []

    open_list = [START]

    while True:
        if len(open_list) == 0:
            break

        print('-----')
        print('open_list', open_list)
        node = open_list[0]  # 左边最头部含有上一轮父层次的节点
        G.nodes[node][VISITED] = True
        search_path.append(node)
        print('search_path', len(search_path), search_path)

        print('选择', node)
        for n in nx.neighbors(G, node):
            try:
                walkable = G.nodes[n][WALKABLE]
            except:
                walkable = True

            visited = G.nodes[n][VISITED]
            # 如果节点已经在队列里面,则不予重复添加。
            if (not visited) and walkable and (n not in open_list):
                open_list.append(n)
                G.nodes[n][PARENT] = node

        print('弹出', node)
        del (open_list[0])
        print('open_list', open_list)
        print('nodes', G.nodes(data=True))

        if node == GOAL:
            print('到达->', GOAL)
            break


def find_path_by_parent(G, START, GOAL):
    t = GOAL
    path = [t]
    is_find = False
    while not is_find:
        for n in G.nodes(data=True):
            if n[0] == t:
                print('parent', n)
                parent = n[1][PARENT]
                path.append(parent)

                if parent == START:
                    is_find = True
                    break

                t = parent

    list.reverse(path)
    return path


# 障碍物点
def obstacle_nodes(G, START, GOAL, obstacle, M, N):
    road_closed_nodes = []
    for i in range(obstacle):
        n = (random.randint(0, M - 1), random.randint(0, N - 1))
        if n == START or n == GOAL:
            continue
        if n in road_closed_nodes:
            continue

        G.nodes[n][WALKABLE] = False
        road_closed_nodes.append(n)

    return road_closed_nodes


def dummy_nodes(G):
    fun_nodes = []

    n0 = (1, 2)
    G.nodes[n0][WALKABLE] = False
    fun_nodes.append(n0)

    n1 = (1, 3)
    G.nodes[n1][WALKABLE] = False
    fun_nodes.append(n1)
    n2 = (1, 4)
    G.nodes[n2][WALKABLE] = False
    fun_nodes.append(n2)
    n3 = (1, 5)
    G.nodes[n3][WALKABLE] = False
    fun_nodes.append(n3)
    n4 = (1, 6)
    G.nodes[n4][WALKABLE] = False
    fun_nodes.append(n4)
    n5 = (2, 6)
    G.nodes[n5][WALKABLE] = False
    fun_nodes.append(n5)
    n6 = (3, 6)
    G.nodes[n6][WALKABLE] = False
    fun_nodes.append(n6)
    n7 = (4, 6)
    G.nodes[n7][WALKABLE] = False
    fun_nodes.append(n7)
    n8 = (5, 6)
    G.nodes[n8][WALKABLE] = False
    fun_nodes.append(n8)
    n9 = (5, 5)
    G.nodes[n9][WALKABLE] = False
    fun_nodes.append(n9)
    n10 = (5, 4)
    G.nodes[n10][WALKABLE] = False
    fun_nodes.append(n10)
    n11 = (5, 3)
    G.nodes[n11][WALKABLE] = False
    fun_nodes.append(n11)
    n12 = (5, 2)
    G.nodes[n12][WALKABLE] = False
    fun_nodes.append(n12)

    return fun_nodes


if __name__ == '__main__':
    my_graph()

程序运运行几轮后的选路截图,红色X的点是随机生成的障碍物点,红色X点是说当前这个点不能行走通过:

?

现在特别的为了挑战算法的智商水平,故意为算法制造一些陷阱出来。具体的实验方法,是做一个凹形的墙,把这个凹形的墙正对着出发点,看看算法的表现,重点考察算法是否能机智的绕过这堵墙,?找到终点。

把程序中的起点修改为(2,2)

START = (2, 2)

修改障碍物模式为1:

obstacle_mode = 1

算法的智商表现:

?算法聪明的绕过墙、没有掉进陷阱。

  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2021-11-12 19:50:47  更:2021-11-12 19:51:11 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/9 1:08:51-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码