IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> 高度平衡二叉搜索树(AVLTree) -> 正文阅读

[数据结构与算法]高度平衡二叉搜索树(AVLTree)

高度平衡二叉搜索树(AVLTree)

AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

它的左右子树都是AVL树

左右子树高度之差(简称平衡因子)的绝对值不超过1,平衡因子的求法=右子树高度-左子树的高度
在这里插入图片描述

如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在 O(log2N),搜索时间复杂度O( log2N)

AVL树节点的定义

在这里插入图片描述

AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:

1. 按照二叉搜索树的方式插入新节点

2. 调整节点的平衡因子
在这里插入图片描述

pair<Node*, bool> Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			return make_pair(_root, true);
		}

		// 找到存储位置,把数据插入进去
		Node* parent = _root, *cur = _root;
		while (cur)
		{
			if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else
			{
				return make_pair(cur, true);
			}
		}

		cur = new Node(kv);
		Node* newnode = cur;
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_left = cur;
			cur->_parent = parent;
		}

		// 控制平衡
		// 1、更新平衡因子
		// 2、如果出现不平衡,则需要旋转
		//while (parent)
		while (cur != _root)
		{
			if (parent->_left == cur)
			{
				parent->_bf--;
			}
			else
			{
				parent->_bf++;
			}

			if (parent->_bf == 0)
			{
				break;
			}
			else if (parent->_bf == 1 || parent->_bf == -1)
			{
				// parent所在的子树高度变了,会影响parent->parent
				// 继续往上更新
				cur = parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				//parent所在子树已经不平衡,需要旋转处理一下
				if (parent->_bf  == -2)
				{
					if (cur->_bf == -1)
					{
						// 右单旋
						RotateR(parent);
					}
					else // cur->_bf == 1
					{
						RotateLR(parent);
					}
				}
				else // parent->_bf  == 2
				{
					if (cur->_bf == 1)
					{
						// 左单旋
						RotateL(parent);
					}
					else // cur->_bf == -1
					{
						RotateRL(parent);
					}
				}

				break;
			}
			else
			{
				// 插入节点之前,树已经不平衡了,或者bf出错。需要检查其他逻辑
				assert(false);
			}
		}

		return make_pair(newnode, true);
	}

AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:

1. 新节点插入较高左子树的左侧—左左:右单旋

2. 新节点插入较高右子树的右侧—右右:左单旋

3. 新节点插入较高左子树的右侧—左右:先左单旋再右单旋

4. 新节点插入较高右子树的左侧—右左:先右单旋再左单旋

右单旋

在这里插入图片描述

void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		subL->_right = parent;
		Node* parentParent = parent->_parent;
		parent->_parent = subL;

		if (parent == _root)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
				parentParent->_left = subL;
			else
				parentParent->_right = subL;

			subL->_parent = parentParent;
		}

		subL->_bf = parent->_bf = 0;
	}

左单旋

在这里插入图片描述

void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		subL->_right = parent;
		Node* parentParent = parent->_parent;
		parent->_parent = subL;

		if (parent == _root)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
				parentParent->_left = subL;
			else
				parentParent->_right = subL;

			subL->_parent = parentParent;
		}

		subL->_bf = parent->_bf = 0;
	}

左右双旋

在这里插入图片描述

void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;

		RotateL(parent->_left);
		RotateR(parent);

		// ...平衡因子调节还需要具体分析
		if (bf == -1)
		{
			subL->_bf = 0;
			parent->_bf = 1;
			subLR->_bf = 0;
		}
		else if (bf == 1)
		{
			parent->_bf = 0;
			subL->_bf = -1;
			subLR->_bf = 0;
		}
		else if (bf == 0)
		{
			parent->_bf = 0;
			subL->_bf = 0;
			subLR->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}

右左双旋

在这里插入图片描述

void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;

		RotateR(parent->_right);
		RotateL(parent);

		// 平衡因子更新
		if (bf == 1)
		{
			subR->_bf = 0;
			parent->_bf = -1;
			subRL->_bf = 0;
		}
		else if (bf == -1)
		{
			parent->_bf = 0;
			subR->_bf = 1;
			subRL->_bf = 0;
		}
		else if (bf == 0)
		{
			parent->_bf = 0;
			subR->_bf = 0;
			subRL->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}

AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

  1. 验证其为二叉搜索树
    如果中序遍历可得到一个有序的序列,就说明为二叉搜索树

  2. 验证其为平衡树

每个节点子树高度差的绝对值不超过1
在这里插入图片描述

void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}

		_InOrder(root->_left);
		cout << root->_kv.first << ":"<<root->_kv.second<<endl;
		_InOrder(root->_right);
	}

	void InOrder()
	{
		_InOrder(_root);
	}

	int _Height(Node* root)
	{
		if (root == nullptr)
		{
			return 0;
		}

		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);

		return rightHeight > leftHeight ? rightHeight + 1 : leftHeight + 1;
	}

	bool _IsBalance(Node* root)
	{
		if (root == nullptr)
		{
			return true;
		}

		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);

		// 检查一下平衡因子是否正确
		if (rightHeight - leftHeight != root->_bf)
		{
			cout << "平衡因子异常:"<<root->_kv.first<<endl;
			return false;
		}

		return abs(rightHeight - leftHeight) < 2
			&& _IsBalance(root->_left)
			&& _IsBalance(root->_right);
	}

	bool IsAVLTree()
	{
		return _IsBalance(_root);
	}

代码实现

#pragma once
#include <iostream>
#include <assert.h>
using namespace std;

template<class K, class V>
struct AVLTreeNode
{
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;

	// 右子树的高度-左子树的高度
	int _bf; // 平衡因子  balance factor

	pair<K, V> _kv;

	AVLTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _bf(0)
		, _kv(kv)
	{}
};

template<class K, class V>
class AVLTree
{
	typedef AVLTreeNode<K, V> Node;
public:
	AVLTree()
		:_root(nullptr)
	{}

	// 拷贝构造和赋值需要实现深拷贝

	void _Destory(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}

		_Destory(root->_left);
		_Destory(root->_right);
		delete root;
	}

	~AVLTree()
	{
		_Destory(_root);
		_root = nullptr;
	}

	V& operator[](const K& key)
	{
		pair<Node*, bool> ret = Insert(make_pair(key, V()));
		return ret.first->_kv.second;
	}

	pair<Node*, bool> Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			return make_pair(_root, true);
		}

		// 找到存储位置,把数据插入进去
		Node* parent = _root, *cur = _root;
		while (cur)
		{
			if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else
			{
				return make_pair(cur, true);
			}
		}

		cur = new Node(kv);
		Node* newnode = cur;
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_left = cur;
			cur->_parent = parent;
		}

		// 控制平衡
		// 1、更新平衡因子
		// 2、如果出现不平衡,则需要旋转
		//while (parent)
		while (cur != _root)
		{
			if (parent->_left == cur)
			{
				parent->_bf--;
			}
			else
			{
				parent->_bf++;
			}

			if (parent->_bf == 0)
			{
				break;
			}
			else if (parent->_bf == 1 || parent->_bf == -1)
			{
				// parent所在的子树高度变了,会影响parent->parent
				// 继续往上更新
				cur = parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				//parent所在子树已经不平衡,需要旋转处理一下
				if (parent->_bf  == -2)
				{
					if (cur->_bf == -1)
					{
						// 右单旋
						RotateR(parent);
					}
					else // cur->_bf == 1
					{
						RotateLR(parent);
					}
				}
				else // parent->_bf  == 2
				{
					if (cur->_bf == 1)
					{
						// 左单旋
						RotateL(parent);
					}
					else // cur->_bf == -1
					{
						RotateRL(parent);
					}
				}

				break;
			}
			else
			{
				// 插入节点之前,树已经不平衡了,或者bf出错。需要检查其他逻辑
				assert(false);
			}
		}

		return make_pair(newnode, true);
	}

	void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;

		RotateL(parent->_left);
		RotateR(parent);

		// ...平衡因子调节还需要具体分析
		if (bf == -1)
		{
			subL->_bf = 0;
			parent->_bf = 1;
			subLR->_bf = 0;
		}
		else if (bf == 1)
		{
			parent->_bf = 0;
			subL->_bf = -1;
			subLR->_bf = 0;
		}
		else if (bf == 0)
		{
			parent->_bf = 0;
			subL->_bf = 0;
			subLR->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}

	void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;

		RotateR(parent->_right);
		RotateL(parent);

		// 平衡因子更新
		if (bf == 1)
		{
			subR->_bf = 0;
			parent->_bf = -1;
			subRL->_bf = 0;
		}
		else if (bf == -1)
		{
			parent->_bf = 0;
			subR->_bf = 1;
			subRL->_bf = 0;
		}
		else if (bf == 0)
		{
			parent->_bf = 0;
			subR->_bf = 0;
			subRL->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}

	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
		{
			subRL->_parent = parent;
		}

		subR->_left = parent;
		Node* parentParent = parent->_parent;
		parent->_parent = subR;

		if (parent == _root)
		{
			_root = subR;
			_root->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
			{
				parentParent->_left = subR;
			}
			else
			{
				parentParent->_right = subR;
			}
			subR->_parent = parentParent;
		}

		parent->_bf = subR->_bf = 0;
	}

	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		subL->_right = parent;
		Node* parentParent = parent->_parent;
		parent->_parent = subL;

		if (parent == _root)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
				parentParent->_left = subL;
			else
				parentParent->_right = subL;

			subL->_parent = parentParent;
		}

		subL->_bf = parent->_bf = 0;
	}

	Node* Find(const K& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first <  key)
			{
				cur = cur->_right;
			}
			else if (cur->_kv.first > key)
			{
				cur = cur->_left;
			}
			else
			{
				return cur;
			}
		}

		return nullptr;
	}

	// 1、工作中会用的(AVL树不会自己写,这里通过插入深入理解一下他的性质就够了)
	// 2、校招会考的(基本不会问删除的细节)
	// 有兴趣的可以下去实现一下。
	bool Erase(const K& key)
	{
		return false;
	}

	void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}

		_InOrder(root->_left);
		cout << root->_kv.first << ":"<<root->_kv.second<<endl;
		_InOrder(root->_right);
	}

	void InOrder()
	{
		_InOrder(_root);
	}

	int _Height(Node* root)
	{
		if (root == nullptr)
		{
			return 0;
		}

		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);

		return rightHeight > leftHeight ? rightHeight + 1 : leftHeight + 1;
	}

	bool _IsBalance(Node* root)
	{
		if (root == nullptr)
		{
			return true;
		}

		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);

		// 检查一下平衡因子是否正确
		if (rightHeight - leftHeight != root->_bf)
		{
			cout << "平衡因子异常:"<<root->_kv.first<<endl;
			return false;
		}

		return abs(rightHeight - leftHeight) < 2
			&& _IsBalance(root->_left)
			&& _IsBalance(root->_right);
	}

	bool IsAVLTree()
	{
		return _IsBalance(_root);
	}
private:
	Node* _root;
};
  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2021-11-16 19:05:28  更:2021-11-16 19:06:36 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/9 1:03:43-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码