目录
前言
①二叉树前序遍历
②二叉树中序遍历
③二叉树后序遍历
④检查两棵树是否相同
⑤二茶树的最大深度
⑥另一颗树的子树
⑦判断一颗树是否为一颗平衡二叉树
⑧对称二叉树
⑨二叉树镜像
前言
二叉树是笔试面试的重点,如果你对基础不够了解,建议先阅读我的这篇博客回归总结一下
【Java数据结构】挑战全网最细节图解二叉树前、中、后序遍历
①二叉树前序遍历
?
void preOrderTraversal(TreeNode root){
if(root == null) {
return;
}
System.out.print(root.val+" ");
preOrderTraversal(root.left);
preOrderTraversal(root.right);
}
②二叉树中序遍历
?
void inOrderTraversal(TreeNode root){
if(root == null) {
return;
}
inOrderTraversal(root.left);
System.out.print(root.val+" ");
inOrderTraversal(root.right);
}
③二叉树后序遍历
?
void postOrderTraversal(TreeNode root){
if(root == null) {
return;
}
postOrderTraversal(root.left);
postOrderTraversal(root.right);
System.out.print(root.val+" ");
}
④检查两棵树是否相同
public boolean isSameTree(TreeNode p,TreeNode q){
if(p == null && q != null){
return false;
}
if(p != null && q == null){
return false;
}
if(p == null && q ==null){
return true;
}
if(p.val != q.val){
return false;
}
return isSameTree(p.left,q.left) && isSameTree(p.right,q.right);
}
⑤二茶树的最大深度
public int maxDepth(TreeNode root){
if(root == null){
return 0;
}
int leftHeight = maxDepth(root.left);
int rightHeight = maxDepth(root.right);
return Math.abs(leftHeight-rightHeight > 0? leftHeight + 1: rightHeight + 1);
}
⑥另一颗树的子树
?
public boolean isSameTree(TreeNode p,TreeNode q){
if(p == null && q != null){
return false;
}
if(p != null && q == null){
return false;
}
if(p == null && q ==null){
return true;
}
if(p.val != q.val){
return false;
}
return isSameTree(p.left,q.left) && isSameTree(p.right,q.right);
}
public boolean isSubtree(TreeNode root, TreeNode suBroot){
if(root == null && suBroot == null){
return true;
}
if(isSameTree(root,suBroot)){
return true;
}
if(isSubtree(root.right,suBroot)){
return true;
}
if(isSubtree(root.left,suBroot)){
return true;
}
return false;
}
⑦判断一颗树是否为一颗平衡二叉树
???
?
?
public int maxDepth(TreeNode root){
if(root == null){
return 0;
}
int leftHeight = maxDepth(root.left);
int rightHeight = maxDepth(root.right);
return Math.abs(leftHeight-rightHeight > 0? leftHeight + 1: rightHeight + 1);
}
public boolean isBalanced(TreeNode root) {
if(root == null) {
return true;
}
int leftHeight = maxDepth(root.left);
int rightHeight = maxDepth(root.right);
return
Math.abs(leftHeight-rightHeight) < 2 && isBalanced(root.left) && isBalanced(root.right);
}
public int hight(TreeNode root){
if(root == null){
return 0;
}
int leftHeight = hight(root.left);
int rightHeight = hight(root.right);
if(leftHeight >= 0 && rightHeight >= 0 && Math.abs(leftHeight-rightHeight) <= 1){
return Math.max(leftHeight,rightHeight)+1;
}else{
return -1;
}
}
public boolean isBalanced2(TreeNode root) {
return hight(root) >= 0;
}
⑧对称二叉树
public boolean isSymmetricChild(TreeNode leftTree,TreeNode rightTree){
if(leftTree != null && rightTree == null){
return false;
}
if(leftTree == null && rightTree != null){
return false;
}
if(leftTree == null && rightTree == null){
return true;
}
if(leftTree.val != rightTree.val){
return false;
}
return isSymmetricChild(leftTree.left,rightTree.right) &&
isSymmetricChild(leftTree.left,rightTree.right);
}
public boolean isSymmetric(TreeNode root){
if(root == null){
return true;
}
return isSymmetricChild(root.left,root.right);
}
⑨二叉树镜像
?
?
public TreeNode Mirror(TreeNode pRoot){
if(pRoot == null){
return pRoot;
}
if(pRoot.left == null && pRoot.right == null){
return pRoot;
}
TreeNode tmp = pRoot.left;
pRoot.left = pRoot.right;
pRoot.right = tmp;
if(pRoot.left != null){
Mirror(pRoot.left);
return pRoot;
}
if(pRoot.right != null){
Mirror(pRoot.right);
return pRoot;
}
return pRoot;
}
|