数据结构物回顾
- 线性结构: 数组、链表、栈、队列、哈希表
- 树形结构: 二叉树、B树、堆、Trie(字典树)、哈夫曼树、并查集
- 图形结构
相关概念
图
- 图由顶点(vertex)和边(edge)组成,通常表示为G=(V,E)
- G表示一个图,V是顶点集,E是边集
- 顶点集V有穷且非空
- 任意两个顶点之间都可以用边来表示它们之间的关系,边集E可以是空的
有向图
出度、入度
- 出度、入度适用于有向图
- 出度
- 入度
- 一个顶点的入度为x, 是指有x条边以该顶点为终点
无向图
-
无向图的边是无方向的 -
效果类似于下面的有向图
混合图
- 混合图的边可能是无向的,也可能是有向的
简单图、多重图
- 平行边
- 在无向图中,关联一对顶点的无向边如果多余1条,则称这些边为平行边
- 在有向图中,关联一对顶点的有向边如果多于1条,并且他们的方向相同,则称这些边为平行边
- 多重图
- 简单图
- 既没有平行边也没有自环的图
无向完全图
- 无向完全图的任意两个顶点之间都存在边
- n个顶点的无向完全图有n(n-1)/2条边
有向完全图
有权图
- 有权图的边可以拥有权值(Weight)
连通图
- 如果顶点x和y之间存在可相互抵达的路径(直接或间接的路径),则称x和y是连通的
- 如果无向图G中任意2个顶点都是连通的,则称G为连通图
连通分量
- 连通分量; 无向图的极大连通子图
- 连通图只有一个连通分量,即其自身;非连通的无向图有多个连通分量
- 下面的无向图有3个连通分量
强连通图
- 如果有向图G中任意2个定点都是连通的,则称G为强连通图
强连通分量
- 强连通分量: 有向图的极大强连通子图
- 强连通图只有一个强连通分量,及其自身;非强连通的有向图有多个强连通分量
图的实现方案
邻接矩阵
邻接矩阵 - 有权图
邻接表
邻接表 - 有权图
实现图
Graph接口
public interface Graph<V, E> {
void print();
int edgeSize();
int vertexSize();
void addVertex(V v);
void addEdge(V from, V to);
void addEdge(V from, V to, E weight);
void removeVertex(V v);
void removeEdge(V from, V to);
}
ListGraph类
public class ListGraph<V, E> implements Graph<V, E> {
private Map<V, Vertex<V, E>> vertices = new HashMap<>();
private Set<Edge<V, E>> edges = new HashSet<>();
@Override
public void print() {
vertices.forEach((v, vertex) -> {
System.out.println(v);
System.out.println("out-----------");
System.out.println(vertex.outEdges);
System.out.println("in------------");
System.out.println(vertex.inEdges);
});
edges.forEach(edge -> System.out.println(edge));
}
@Override
public int edgeSize() {
return edges.size();
}
@Override
public int vertexSize() {
return vertices.size();
}
@Override
public void addVertex(V v) {
if (vertices.containsKey(v)) {
return;
}
vertices.put(v, new Vertex<>(v));
}
@Override
public void addEdge(V from, V to) {
addEdge(from, to, null);
}
@Override
public void addEdge(V from, V to, E weight) {
Vertex<V, E> fromVertex = vertices.get(from);
if (fromVertex == null) {
fromVertex = new Vertex<>(from);
vertices.put(from, fromVertex);
}
Vertex<V, E> toVertex = vertices.get(to);
if (toVertex == null) {
toVertex = new Vertex<>(to);
vertices.put(to, toVertex);
}
Edge<V, E> edge = new Edge<>(fromVertex, toVertex);
edge.weight = weight;
if (fromVertex.outEdges.remove(edge)) {
toVertex.inEdges.remove(edge);
}
fromVertex.outEdges.add(edge);
toVertex.inEdges.add(edge);
edges.add(edge);
}
@Override
public void removeVertex(V v) {
Vertex<V, E> vertex = vertices.remove(v);
if (vertex == null) {
return;
}
for (Iterator<Edge<V, E>> iterator = vertex.outEdges.iterator(); iterator.hasNext();) {
Edge<V, E> edge = iterator.next();
edge.to.inEdges.remove(edge);
iterator.remove();
edges.remove(edge);
}
for (Iterator<Edge<V, E>> iterator = vertex.inEdges.iterator(); iterator.hasNext();) {
Edge<V, E> edge = iterator.next();
edge.from.outEdges.remove(edge);
iterator.remove();
edges.remove(edge);
}
}
@Override
public void removeEdge(V from, V to) {
Vertex<V, E> fromVertex = vertices.get(from);
if (fromVertex == null) {
return;
}
Vertex<V, E> toVertex = vertices.get(to);
if (toVertex == null) {
return;
}
Edge<V, E> edge = new Edge<>(fromVertex, toVertex);
if (fromVertex.outEdges.remove(edge)) {
toVertex.inEdges.remove(edge);
edges.remove(edge);
}
}
private static class Vertex<V, E> {
V value;
Set<Edge<V, E>> inEdges = new HashSet<>();
Set<Edge<V, E>> outEdges = new HashSet<>();
public Vertex(V value) {
this.value = value;
}
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}
Vertex<V, E> vertex = (Vertex<V, E>) o;
return Objects.equals(value, vertex.value);
}
@Override
public int hashCode() {
return Objects.hash(value);
}
@Override
public String toString() {
return value == null ? "null" : value.toString();
}
}
private static class Edge<V, E> {
Vertex<V, E> from;
Vertex<V, E> to;
E weight;
public Edge(Vertex<V, E> from, Vertex<V, E> to) {
this.from = from;
this.to = to;
}
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}
Edge<V, E> edge = (Edge<V, E>) o;
return Objects.equals(from, edge.from) && Objects.equals(to, edge.to);
}
@Override
public int hashCode() {
return Objects.hash(from, to);
}
@Override
public String toString() {
return "Edge{" +
"from=" + from +
", to=" + to +
", weight=" + weight +
'}';
}
}
}
测试类
public class Main {
public static void main(String[] args) {
Graph<String, Integer> graph = new ListGraph<>();
graph.addEdge("V1", "V0", 9);
graph.addEdge("V1", "V2", 3);
graph.addEdge("V2", "V0", 2);
graph.addEdge("V2", "V3", 5);
graph.addEdge("V3", "V4", 1);
graph.addEdge("V0", "V4", 6);
graph.removeVertex("V0");
graph.print();
}
}
测试生成图
测试删除边
- 删除了顶点V0到顶点V4的边
测试删除顶点
- 测试删除V0顶点及其相关的边
|