IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> 二分查找练习总结以及解题模板 -> 正文阅读

[数据结构与算法]二分查找练习总结以及解题模板

二分查找练习总结以及解题模板总结

最近在刷二分查找相关的题,由于二分查找不只限于这一道简单的题,而是一类题的解题思路,因此在这里简单做一个总结。



一、二分查找的母题

给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。

这是leetcode上的第704题,感兴趣的同学可以去看看具体的题目要求。

二分查找的时间复杂度为o(log n),查找效率要比遍历高不少,但是用二分查找有两个前提,①有序数组②数组中无重复元素。并不是使用二分这个思想做题就一定得遵循这两条,在后面的题目中有所体现,请耐心看完。

二分查找主要是通过衡量nums[mid]与目标值之间的大小关系,以此判断究竟是将查找区间前移(right = mid - 1)还是后移(left = mid + 1)

这里我给出我的题解:

class Solution {
    public int search(int[] nums, int target) {
        if(target < nums[0] || target > nums[nums.length - 1]){
            return -1;
        }
        int left = 0;
        int right = nums.length - 1;
        while (left <= right){
            int mid = left + ((right - left) >> 1);
            if(nums[mid] == target){
                return mid;
            }else if(nums[mid] < target){
                left = mid + 1;
            }else{
                right = mid - 1;
            }
        }
        return -1;
    }
}

二、二分查找思想的使用

这里着重强调一点,当题目中出现 为无重复元素的升序排列数组或时间复杂度为o(log n)这样的词时,就应该着重考虑二分查找

1.leetcode 35题

给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。
请必须使用时间复杂度为 O(log n) 的算法。

这道题如果不加上如果目标值不存在于数组中这句话,那就是二分查找本题了,因此根据题设很自然的联想到使用二分查找。这里需要注意一下,二分查找的本体永远是while循环,且while循环的终止条件永远都是left > right,且最后越界时left都比right大1,然后根据具体题目的要求,看需要返回啥东西,确定while循环结束后return什么即可

class Solution {
    public int searchInsert(int[] nums, int target) {
        int left = 0;
        int right = nums.length - 1;
        while(left <= right){
			int mid = left + ((right - left) >> 1);
			if(nums[mid] > target){
				right = mid - 1;
			}else if(nums[mid] < target){
				left = mid + 1;
			}else{
			//特殊情况:在数组中找到target,返回相应下标
				return mid;
			}
		}
		//三种情况,target的值不存在于nums中(用一个具体的例子推一下就行)
        //1. 目标值在所有数组元素之前,此时right = -1,left = 0,可以返回left,也可以返回right + 1
        //2. 目标值在所有数组元素之后,此时left = nums.length,right = nums.length - 1,可以返回left,也可以返回right + 1
        //3. 目标值插入在数组中的位置,经过具体场景推导,此时left仍然大于right,因此既可以返回left,也可以返回right + 1
		return left;
    }
}

2.leetcode 34题

给定一个按照升序排列的整数数组 nums,和一个目标值 target。找出给定目标值在数组中的开始位置和结束位置。
如果数组中不存在目标值 target,返回 [-1, -1]。
进阶:
你可以设计并实现时间复杂度为 O(log n) 的算法解决此问题吗?

关键字和O(log n) 再次表明,这道题需要使用二分查找,但实际上这道题我也是理解了别人的题解,然后自己一步一步推出来的(惭愧,刚开始刷题,还是太菜)

以我对这道题的理解所能提供的建议,求左边界和右边界的函数只需从思想上入手,即二分查找的本质,不然从具体推抽象真的不好想

这道题和真正的二分有一个区别,那就是数组可能存在重复元素,且要求这个元素的起始和终止位置,因此就不能在nums[mid] == target时进行return操作,分别在求左边界和右边界时和nums[mid] > targetnums[mid] < target合并。以求左边界为例,在跳出while循环时,left和right所处的位置,left一定是在区间的第一个位置上,right一定在区间的前一个位置上(可以自己举个例子试一下),这也是二分的本质,在跳出二分的while循环时,left一定是在right右边的第一个位置上,这一点多举例子后就能深刻理解。

代码如下:

class Solution {
    public int[] searchRange(int[] nums, int target) {
        int leftborder = leftBorder(nums,target);
        int rightborder = rightBorder(nums,target);
        if(leftborder == -2 || rightborder == -2){
            return new int[]{-1,-1};
        }
        if(rightborder - leftborder > 1){
            return new int[]{leftborder + 1, rightborder - 1};
        }
        return new int[]{-1,-1};
    }
    
    //求左边界
    public int getLeftBorder(int[] nums,int target){
        int left = 0;
        int right = nums.length - 1;
        int leftborder = -2;
        while(left <= right){
            int mid = left + ((right - left) >> 1);
            if(nums[mid] < target){
                //由于数组按照升序排序,此时的nums[mid] < target,相当于mid还在target区间的左边,因此需要将二分搜索区间右移,left = mid + 1;
                left = mid + 1;
            }else{
                //由于数组按照升序排序,此时的nums[mid] >= target,分两种情况讨论
                //在没有了nums[mid] == target -> return mid;这个操作后,当nums[mid] == target时,right会继续右移直至移动到target区间的前一个位置上
                //1. nums[mid] > target,证明mid还在target区间的右边,因此需要将二分搜索区间左移,right = mid - 1,寻找边界
                //2. nums[mid] == target,证明mid已经在target区间的内部,因此需要继续将二分搜索区间左移,right = mid - 1,寻找边界
                right = mid - 1;
                leftborder = right;
            }
        }
        return leftborder;
    }

    //求右边界
    public int getRightBorder(int[] nums,int target){
        int left = 0;
        int right = nums.length - 1;
        int rightborder = -2;
        while(left <= right){
            int mid = left + ((right - left) >> 1);
            if(nums[mid] > target){
                //由于数组按升序排序,此时的nums[mid] > target,相当于mid还在target区间的右边,因此需要将二分搜索区间左移,right = mid - 1
                right = mid - 1;
            }else{
                left = mid + 1;
                rightborder = left;
            }
        }
        return rightborder;
    }
}

3.leetcode 69题

给你一个非负整数 x ,计算并返回 x 的 算术平方根 。

由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。

注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5 。
代码如下:

class Solution {
    public int mySqrt(int x) {
        //二分查找法的核心思想实际上是你在用二分之后,需要对找到的数或者该位置的数进行怎样的操作来满足题意,最关键的不是right和left的移动,而是while循环中的if条件判断,需要根据具体的题目场景进行改变,此外return也要根据具体场景变化而变化
        //特殊情况,1和0的平方根是他们自己
        if(x == 1 || x == 0){
            return x;
        }
        int left = 0;
        int right = x;
        while(left <= right){
            int mid = left + ((right - left) >> 1);
            if(mid > x/mid){
                right = mid -1;
            }else if(mid < x/mid){
                left = mid + 1;
            }else{
                return mid;
            }
        }
        return right;
    }
}

4 leetcode 367题

给定一个 正整数 num ,编写一个函数,如果 num 是一个完全平方数,则返回 true ,否则返回 false 。

进阶:不要 使用任何内置的库函数,如 sqrt 。

这道题和上道题一样,属于二分查找while循环里if条件随实际题意改变而改变的题,就是判断条件

class Solution {
    public boolean isPerfectSquare(int num) {
        int left = 1;
        int right = num;
        while(left <= right){
            int mid = left + ((right - left) >> 1);
            long sqrt = (long)mid * mid;
            if(sqrt > num){
                right = mid - 1;
            }else if(sqrt < num){
                left = mid + 1;
            }else{
                return true;
            }
        }
        return false;

    }
}

总结

当题目中出现有序数组、时间复杂度O(log n)、无重复元素等字眼时,首先考虑二分查找,其次也不是必须无重复元素才能用二分查找,在寻找区间左边界和右边界时可也使用二分查找(34题主要利用了当跳出while循环时,left是比right大1这一条特性的),因此需要灵活使用。此外二分查找的while循环里if的判断条件也不是固定的,随题意的变化而变化,因此要具体问题具体分析(以69题和367题为例)。

  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2022-01-03 16:22:02  更:2022-01-03 16:23:48 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/10 11:12:05-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码