问题:为什么散列表和链表经常会一起使用?
1. 用散列表实现 O(1) 时间复杂度的 LRU 缓存淘汰算法
- 首先,一个缓存(cache)系统主要包含下面这几个操作:
- 往缓存中添加一个数据;
- 从缓存中删除一个数据;
- 在缓存中查找一个数据。
- 使用 双向链表 实现 LRU 缓存淘汰算法的复杂度:
- 当要缓存某个数据的时候,先在链表中查找这个数据。如果没有找到,则直接将数据放到链表的尾部;如果找到了,我们就把它移动到链表的尾部。因为查找数据需要遍历链表,所以单纯用链表实现的 LRU 缓存淘汰算法的时间复杂很高,是 O(n)。
- 使用 双向链表+散列表 实现 LRU 缓存淘汰算法的复杂度:
- 查找一个数据:时间复杂度O(1)。【散列表中查找数据的时间复杂度接近 O(1),所以通过散列表,我们可以很快地在缓存中找到一个数据。当找到数据之后,我们还需要将它移动到双向链表的尾部。】
- 删除一个数据:时间复杂度O(1)。【我们需要找到数据所在的结点,然后将结点删除。借助散列表,我们可以在 O(1) 时间复杂度里找到要删除的结点。因为我们的链表是双向链表,双向链表可以通过前驱指针 O(1) 时间复杂度获取前驱结点,所以在双向链表中,删除结点只需要 O(1) 的时间复杂度。】
- 添加一个数据:时间复杂度O(1)
- 添加数据到缓存稍微有点麻烦,我们需要先看这个数据是否已经在缓存中。如果已经在其中,需要将其移动到双向链表的尾部;如果不在其中,还要看缓存有没有满。如果满了,则将双向链表头部的结点删除,然后再将数据放到链表的尾部;如果没有满,就直接将数据放到链表的尾部。
- 这整个过程涉及的查找操作都可以通过散列表来完成。其他的操作,比如删除头结点、链表尾部插入数据等,都可以在 O(1) 的时间复杂度内完成。所以,这三个操作的时间复杂度都是 O(1)。至此,我们就通过散列表和双向链表的组合使用,实现了一个高效的、支持 LRU 缓存淘汰算法的缓存系统原型。
2. Redis 有序集合
- 在有序集合中,每个成员对象有两个重要的属性,key(键值)和 score(分值)。我们不仅会通过 score 来查找数据,还会通过 key 来查找数据。
- 细化一下 Redis 有序集合的操作:
- 添加一个成员对象;
- 按照键值来删除一个成员对象;
- 按照键值来查找一个成员对象;
- 按照分值区间查找数据,比如查找积分在[100, 356]之间的成员对象;
- 按照分值从小到大排序成员变量;
- 如果我们仅仅按照分值将成员对象组织成跳表的结构,那按照键值来删除、查询成员对象就会很慢,解决方法与 LRU 缓存淘汰算法的解决方法类似。我们可以再按照键值构建一个散列表,这样按照 key 来删除、查找一个成员对象的时间复杂度就变成了 O(1)。同时,借助跳表结构,其他操作也非常高效。
- 实际上,Redis 有序集合的操作还有另外一类,也就是查找成员对象的排名(Rank)或者根据排名区间查找成员对象。这个功能单纯用刚刚讲的这种组合结构就无法高效实现了。(实现方法待补充)
3. Java LinkedHashMap
- LinkedHashMap 是通过 双向链表和散列表 这两种数据结构组合实现的。不仅支持按照插入顺序遍历数据,还支持按照访问顺序来遍历数据。其本身就是一个支持 LRU 缓存淘汰策略的缓存系统。
- LinkedHashMap 中的“Linked”实际上是指的是双向链表,并非指用链表法解决散列冲突。
4. 解答
- 散列表这种数据结构虽然支持非常高效的数据插入、删除、查找操作,但是散列表中的数据都是通过散列函数打乱之后无规律存储的。它无法支持按照某种顺序快速地遍历数据。如果希望按照顺序遍历散列表中的数据,那需要将散列表中的数据拷贝到数组中,然后排序,再遍历。
- 因为散列表是动态数据结构,不停地有数据的插入、删除,所以每当我们希望按顺序遍历散列表中的数据的时候,都需要先排序,那效率势必会很低。为了解决这个问题,我们将散列表和链表(或者跳表)结合在一起使用。
5. 练习(待完成)
|