Day23
最小生成树开搞!
1140. 最短网络 - AcWing题库
p
r
i
m
prim
prim 模板题,因为数据量小,而且是以邻接矩阵的方式给出图,所以用
p
r
i
m
prim
prim 算法更加方便
#include<bits/stdc++.h>
using namespace std;
const int N = 110;
int w[N][N];
int dist[N];
bool st[N];
int n;
int prim()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
int res = 0;
for (int i = 0; i < n; i++)
{
int t = -1;
for (int j = 1; j <= n; j++)
if (!st[j] && (t == -1 || dist[t] > dist[j])) t = j;
res += dist[t];
st[t] = true;
for (int j = 1; j <= n; j++)
dist[j] = min(dist[j], w[t][j]);
}
return res;
}
int main(void)
{
cin >> n;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
cin >> w[i][j];
cout << prim() << endl ;
return 0;
}
1141. 局域网 - AcWing题库
K
r
u
s
k
a
l
Kruskal
Kruskal 模板题,如果已经在一个集合的边就删掉
#include<bits/stdc++.h>
using namespace std;
const int N = 110, M = 210;
int n, m;
struct Edge
{
int a, b, w;
bool operator< (const Edge &t) const
{
return w < t.w;
}
}e[M];
int p[N];
int find(int x)
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
int main(void)
{
cin >> n >> m;
for (int i = 1; i <= n; i++) p[i] = i;
for (int i = 0; i < m; i++)
{
int a, b, w;
cin >> a >> b >> w;
e[i] = {a, b, w};
}
sort(e, e + m);
int res = 0;
for (int i = 0; i < m; i++)
{
int a = find(e[i].a), b = find(e[i].b), w = e[i].w;
if (a != b) p[a] = b;
else res += w;
}
cout << res << endl ;
return 0;
}
1142. 繁忙的都市 - AcWing题库
K
r
u
s
k
a
l
Kruskal
Kruskal 模板题,找最小生成树的最长边即可
#include<bits/stdc++.h>
using namespace std;
const int N = 310, M = 8010;
int n, m;
struct Edge
{
int a, b, w;
bool operator< (const Edge &t) const
{
return w < t.w;
}
}e[M];
int p[N];
int find(int x)
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
int main(void)
{
cin >> n >> m;
for (int i = 1; i <= n; i++) p[i] = i;
for (int i = 0; i < m; i++)
{
int a, b, w;
cin >> a >> b >> w;
e[i] = {a, b, w};
}
sort(e, e + m);
int res = 0;
for (int i = 0; i < m; i++)
{
int a = find(e[i].a), b = find(e[i].b), w = e[i].w;
if (a != b) {
p[a] = b;
res = max(res, w);
}
}
cout << n - 1 << " " << res << endl ;
return 0;
}
1143. 联络员 - AcWing题库
还是
K
r
u
s
k
a
l
Kruskal
Kruskal 模板题,根据题意套模板就行
#include<bits/stdc++.h>
using namespace std;
const int N = 2010, M = 10010;
int n, m, cnt, res;
int P[N];
struct Edge
{
int a, b, w;
bool operator< (const Edge &t) const
{
return w < t.w;
}
}e[M];
int find(int x)
{
if (x != P[x]) P[x] = find(P[x]);
return P[x];
}
int main(void)
{
cin >> n >> m;
for (int i = 1; i <= n; i++) P[i] = i;
for (int i = 0; i < m; i++)
{
int p, a, b, w;
cin >> p >> a >> b >> w;
if (p == 1) {
res += w;
a = find(a), b = find(b);
if (a != b) P[a] = b;
}
else {
e[cnt++] = {a, b, w};
}
}
sort(e, e + cnt);
for (int i = 0; i < cnt; i++)
{
int a = find(e[i].a), b = find(e[i].b), w = e[i].w;
if (a != b)
{
P[a] = b;
res += w;
}
}
cout << res << endl ;
return 0;
}
1146. 新的开始 - AcWing题库
这题给了邻接矩阵,应该是用
p
r
i
m
prim
prim 算法,但是我顺手写的是
K
r
u
s
k
a
l
Kruskal
Kruskal 算法,做法也很简单,设一个超级源点,然后让这个源点向每一个发电机连建边,然后跑一边模板即可。
#include<bits/stdc++.h>
using namespace std;
const int N = 310, M = 100010;
int n, p[N], cnt, x;
struct Edge
{
int a, b, w;
bool operator< (const Edge &t) const
{
return w < t.w;
}
}e[M + N];
int find(int x)
{
if (x != p[x]) p[x] = find(p[x]);
return p[x];
}
int main(void)
{
ios::sync_with_stdio(false);
cin.tie(0);
cin >> n;
for (int i = 0; i <= n; i++) p[i] = i;
for (int i = 1; i <= n; i++) {
cin >> x;
e[cnt++] = {0, i, x};
}
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
{
cin >> x;
e[cnt++] = {i, j, x};
}
sort(e, e + cnt);
int res = 0;
for (int i = 0; i < cnt; i++)
{
int a = find(e[i].a), b = find(e[i].b), w = e[i].w;
if (a != b)
{
res += w;
p[a] = b;
}
}
cout << res << endl ;
return 0;
}
1145. 北极通讯网络 - AcWing题库
现在给我弄得就只会写
K
r
u
s
k
a
l
Kruskal
Kruskal 算法了,
K
r
u
s
k
a
l
Kruskal
Kruskal 真好用,每一次连边都是集合的合并,所以当集合不超过
k
k
k 个时就输出当前边即可
#include<bits/stdc++.h>
#define x first
#define y second
using namespace std;
const int N = 510, M = N * N;
typedef pair<int, int> PII;
PII v[N];
int n, m, p[N], cnt;
struct Edge
{
int a, b;
double w;
bool operator< (const Edge &t) const
{
return w < t.w;
}
}e[M];
double get(PII a, PII b)
{
int dx = a.x - b.x, dy = a.y - b.y;
return sqrt(dx * dx + dy * dy);
}
int find(int x)
{
if (x != p[x]) p[x] = find(p[x]);
return p[x];
}
int main(void)
{
cin >> n >> m;
for (int i = 1; i <= n; i++) p[i] = i;
for (int i = 1; i <= n; i++) cin >> v[i].x >> v[i].y;
for (int i = 1; i <= n; i++)
for (int j = i + 1; j <= n; j++)
e[cnt++] = {i, j, get(v[i], v[j])};
sort(e, e + cnt);
for (int i = 0; i < cnt; i++)
{
int a = find(e[i].a), b = find(e[i].b);
double w = e[i].w;
if (a != b)
{
p[a] = b;
if (-- n == m) {
printf("%.2f", w);
}
}
}
return 0;
}
|