数据结构与算法之美
入门篇
06 | 链表(上):如何实现LRU缓存淘汰算法?
五花八门的链表结构
从下图中可以看到,数组需要一块连续的内存空间来存储,对内存的要求比较高。如果申请一个 100MB 大小的数组,当内存中没有连续的、足够大的存储空间时,即便内存的剩余总可用空间大于 100MB,仍然会申请失败。
而链表恰恰相反,它并不需要一块连续的内存空间,它通过“指针”将一组零散的内存块串联起来使用,所以如果申请的是 100MB 大小的链表,根本不会有问题。 三种最常见的链表结构,分别是:单链表、双向链表和循环链表。
单链表 链表通过指针将一组零散的内存块串联在一起。 其中,把内存块称为链表的“结点”。为了将所有的结点串起来,每个链表的结点除了存储数据之外,还需要记录链上的下一个结点的地址。如图所示,把这个记录下个结点地址的指针叫作后继指针 next。 从单链表图中,可以发现,其中有两个结点是比较特殊的,它们分别是第一个结点和最后一个结点。第一个结点叫作头结点,最后一个结点叫作尾结点。其中,头结点用来记录链表的基地址。有了它,就可以遍历得到整条链表。而尾结点的指针不是指向下一个结点,而是指向一个空地址 NULL,表示这是链表上最后一个结点。
在进行数组的插入、删除操作时,为了保持内存数据的连续性,需要做大量的数据搬移,所以时间复杂度是 O(n)。而在链表中插入或者删除一个数据,并不需要为了保持内存的连续性而搬移结点,因为链表的存储空间本身就不是连续的。所以,在链表中插入和删除一个数据是非常快速的。 链表要想随机访问第 k 个元素,就没有数组那么高效了。因为链表中的数据并非连续存储的,所以无法像数组那样,根据首地址和下标,通过寻址公式就能直接计算出对应的内存地址,而是需要根据指针一个结点一个结点地依次遍历,直到找到相应的结点。
循环链表 循环链表是一种特殊的单链表,它和单链表唯一的区别就在尾结点。单链表的尾结点指针指向空地址,表示这是最后的结点。而循环链表的尾结点指针是指向链表的头结点。从循环链表图中,可以看出,它像一个环一样首尾相连,所以叫作“循环”链表。 和单链表相比,循环链表的优点是从链尾到链头比较方便。当要处理的数据具有环型结构特点时,就特别适合采用循环链表。比如著名的约瑟夫问题,又叫丢手绢问题:假设N个人围成一圈,第一个人从1开始报数,报M的将被杀掉,下一个人接着从1开始报。如此反复,最后剩下的一个为胜利者。
双向链表 双向链表,顾名思义,它支持两个方向,每个结点不止有一个后继指针 next 指向后面的结点,还有一个前驱指针 prev 指向前面的结点。 双向链表需要额外的两个空间来存储后继结点和前驱结点的地址。所以,如果存储同样多的数据,双向链表要比单链表占用更多的内存空间。虽然两个指针比较浪费存储空间,但可以支持双向遍历,这样也带来了双向链表操作的灵活性。
从结构上来看,双向链表可以支持 O(1) 时间复杂度的情况下找到前驱结点,正是这样的特点,也使双向链表在某些情况下的插入、删除等操作都要比单链表简单、高效。
疑问:前面提到单链表的插入、删除操作的时间复杂度已经是 O(1) ,双向链表还能再怎么高效呢? 在实际的软件开发中,从链表中删除一个数据无外乎这两种情况:
- 删除结点中“值等于某个给定值”的结点;
- 删除给定指针指向的结点。
对于第一种情况,不管是单链表还是双向链表,为了查找到值等于给定值的结点,都需要从头结点开始一个一个依次遍历对比,直到找到值等于给定值的结点,然后再将其删除。 单纯的删除操作时间复杂度是 O(1),但遍历查找的时间是主要的耗时点,对应的时间复杂度为 O(n)。根据时间复杂度分析中的加法法则,删除值等于给定值的结点对应的链表操作的总时间复杂度为 O(n)。
对于第二种情况,已经找到了要删除的结点,但是删除某个结点 q 需要知道其前驱结点,而单链表并不支持直接获取前驱结点,所以,为了找到前驱结点,还是要从头结点开始遍历链表,直到 p->next=q,说明 p 是 q 的前驱结点。 但是对于双向链表来说,结点已经保存了前驱结点的指针,不需要像单链表那样遍历。所以,针对第二种情况,单链表删除操作的时间复杂度 O(n) ,而双向链表的时间复杂度为 O(1) 。
除了插入、删除操作有优势之外,对于一个有序链表,双向链表的按值查询的效率也要比单链表高一些。因为,可以记录上次查找的位置 p,每次查询时,根据要查找的值与 p 的大小关系,决定是往前还是往后查找,所以平均只需要查找一半的数据。
双向循环链表
链表 VS 数组性能大比拼
数组简单易用,在实现上使用的是连续的内存空间,可以借助 CPU 的缓存机制,预读数组中的数据,所以访问效率更高。而链表在内存中并不是连续存储,所以对 CPU 缓存不友好,没办法有效预读。
数组的缺点是大小固定,一经声明就要占用整块连续内存空间。如果声明的数组过大,系统可能没有足够的连续内存空间分配给它,导致“内存不足(out of memory)”。如果声明的数组过小,则可能出现不够用的情况。这时只能再申请一个更大的内存空间,把原数组拷贝进去,非常费时。链表本身没有大小的限制,天然地支持动态扩容,这也是它与数组最大的区别。
如果代码对内存的使用非常苛刻,那数组更适合。因为链表中的每个结点都需要消耗额外的存储空间去存储一份指向下一个结点的指针,所以内存消耗会翻倍。而且,对链表进行频繁的插入、删除操作,还会导致频繁的内存申请和释放,容易造成内存碎片,就有可能会导致频繁的 GC(Garbage Collection,垃圾回收)。
如何基于链表实现 LRU 缓存淘汰算法?
当有一个新的数据被访问时,从链表头开始顺序遍历链表。
如果此数据之前已经被缓存在链表中了,遍历得到这个数据对应的结点,并将其从原来的位置删除,然后再插入到链表的头部。
如果此数据没有在缓存链表中,又可以分为两种情况:
- 如果此时缓存未满,则将此结点直接插入到链表的头部;
- 如果此时缓存已满,则链表尾结点删除,将新的数据结点插入链表的头部。
|