IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> Part I. S2. 直觉模糊集理论 -> 正文阅读

[数据结构与算法]Part I. S2. 直觉模糊集理论


2.1 直觉模糊集定义

定义1.7
??设 X X X是一个非空经典集合,则称
A ~ = { ? x , μ A ~ ( x ) , ν A ~ ( x ) ? ∣ x ∈ X } (2.1) \tilde {A} = \left\{ \left\langle x,\mu_{\tilde{A}}(x), \nu_{\tilde{A}}(x) \right\rangle | x\in X \right\}\tag{2.1} A~={?x,μA~?(x),νA~?(x)?xX}(2.1)
??为 X X X上的一个直觉模糊集,其中 μ A ~ ( x ) \mu_{\tilde{A}}(x) μA~?(x) v A ~ ( x ) v_{\tilde{A}}(x) vA~?(x)分别为元素x属于 A ~ \tilde{A} A~的隶属度和非隶属度,即
μ A ~ : X → [ 0 , 1 ] , x ∈ X → μ A ~ ( x ) ∈ [ 0 , 1 ] \mu_{\tilde{A}}:X \rightarrow [0,1], x \in X \rightarrow \mu_{\tilde{A}}(x) \in [0,1] μA~?:X[0,1],xXμA~?(x)[0,1]
ν A ~ : X → [ 0 , 1 ] , x ∈ X → ν A ~ ( x ) ∈ [ 0 , 1 ] \nu_{\tilde{A}}:X \rightarrow [0,1], x \in X \rightarrow \nu_{\tilde{A}}(x) \in [0,1] νA~?:X[0,1],xXνA~?(x)[0,1]
??且满足
0 ≤ μ A ~ ( x ) + ν A ~ ( x ) ≤ 1 , x ∈ X 0 \leq \mu_{\tilde{A}}(x) + \nu_{\tilde{A}}(x) \leq 1, x \in X 0μA~?(x)+νA~?(x)1,xX
??式中, μ A ~ \mu_{\tilde{A}} μA~? ν A ~ \nu_{\tilde{A}} νA~?分别表示支持元素x属于集合 A A A的证据所导出的肯定隶属度的下界和反对元素x属于集合 A A A的证据所导出的否定隶属度的下界。 X X X上所有直觉模糊集的集合记为 F ( X ) F(X) F(X)

??直觉模糊集可以简记为 A ~ = ? x , μ A ~ , ν A ~ ? \tilde{A}=\left\langle x,\mu_{\tilde{A}},\nu_{\tilde{A}}\right\rangle A~=?x,μA~?,νA~??或者 A ~ = ? μ A ~ , ν A ~ ? / x \tilde{A}=\left\langle\mu_{\tilde{A}},\nu_{\tilde{A}}\right\rangle/x A~=?μA~?,νA~??/x

??显然,每一个模糊集 A ~ \tilde{A} A~对应于下列直觉模糊集:
A ~ = { ? x , μ A ~ ( x ) , 1 ? μ A ~ ( x ) ? ∣ x ∈ X } (2.2) \tilde{A} = \left\{ \left\langle x,\mu_{\tilde{A}}(x),1-\mu_{\tilde{A}}(x)\right\rangle|x \in X \right\}\tag{2.2} A~={?x,μA~?(x),1?μA~?(x)?xX}(2.2)
??对于任一 x ∈ X x \in X xX,称 π A ~ = 1 ? μ A ~ ( x ) ? ν A ~ ( x ) \pi_{\tilde{A}}=1-\mu_{\tilde{A}}(x)-\nu_{\tilde{A}}(x) πA~?=1?μA~?(x)?νA~?(x)为直觉模糊集 A ~ \tilde{A} A~中元素x的直觉指数(intuitionistic index),它表示元素x A ~ \tilde{A} A~的犹豫度(hesitancy degree)。显然,对于每一个 x ∈ X x \in X xX 0 ≤ π A ~ ≤ 1 0 \leq \pi_{\tilde{A}} \leq 1 0πA~?1。特别地,如果
π A ~ ( x ) = 1 ? μ A ~ ( x ) ? [ 1 ? μ A ~ ] = 0 , x ∈ X (2.3) \pi_{\tilde{A}}(x)=1-\mu_{\tilde{A}}(x)-[1-\mu_{\tilde{A}}]=0, x \in X\tag{2.3} πA~?(x)=1?μA~?(x)?[1?μA~?]=0,xX(2.3)
??则直觉模糊集 A ~ \tilde{A} A~退化为Zadeh的模糊集。因此,Zadeh的模糊集是直觉模糊集的一个特例。

??示例

6个梨属于成熟和不成熟的程度分别为 [ ( 0.6 , 0.3 ) , ( 0.7 , 0.2 ) , ( 0.6 , 0.4 ) , ( 0.5 , 0.2 ) , ( 0.7 , 0.2 ) , ( 0.8 , 0.1 ) ] [(0.6,0.3),(0.7,0.2),(0.6,0.4),(0.5,0.2),(0.7,0.2),(0.8,0.1)] [(0.6,0.3),(0.7,0.2),(0.6,0.4),(0.5,0.2),(0.7,0.2),(0.8,0.1)]
其中第1个梨属于成熟的概率为0.6,属于不成熟的概率为0.3


2.2 直觉模糊集运算法则

定义1.8
??设 A ~ \tilde{A} A~ B ~ \tilde{B} B~是论域X上的两个直觉模糊集, A ~ = { ? x , μ A ~ ( x ) , ν A ~ ( x ) ? ∣ x ∈ X } \tilde{A}=\left\{ \left\langle x,\mu_{\tilde{A}}(x),\nu_{\tilde{A}}(x)\right\rangle|x \in X \right\} A~={?x,μA~?(x),νA~?(x)?xX} B ~ = { ? x , μ B ~ ( x ) , ν B ~ ( x ) ? ∣ x ∈ X } \tilde{B}=\left\{ \left\langle x,\mu_{\tilde{B}}(x),\nu_{\tilde{B}}(x)\right\rangle|x \in X \right\} B~={?x,μB~?(x),νB~?(x)?xX} λ > 0 \lambda \gt 0 λ>0是任意实数,则

??(1)?直觉模糊集的包含关系: A ~ ? B ~ \tilde{A} \subseteq \tilde{B} A~?B~当且仅当 ? x ∈ X , μ A ~ ( x ) ≤ μ B ~ \forall x \in X, \mu_{\tilde{A}}(x)\leq \mu_{\tilde{B}} ?xX,μA~?(x)μB~? ν A ~ ( x ) ≥ ν B ~ \nu_{\tilde{A}}(x)\geq \nu_{\tilde{B}} νA~?(x)νB~?

??(2)?直觉模糊集的相等关系: A ~ = B ~ \tilde{A} = \tilde{B} A~=B~当且仅当 ? x ∈ X , μ A ~ ( x ) = μ B ~ \forall x \in X, \mu_{\tilde{A}}(x)= \mu_{\tilde{B}} ?xX,μA~?(x)=μB~? ν A ~ ( x ) = ν B ~ \nu_{\tilde{A}}(x)= \nu_{\tilde{B}} νA~?(x)=νB~?

??(3)?直觉模糊集的补:
( A ~ ) c = { ? x , ν A ~ ( x ) , μ A ~ ( x ) ? ∣ x ∈ X } {(\tilde{A})}^c = \left\{ \left\langle x,\nu_{\tilde{A}}(x),\mu_{\tilde{A}}(x) \right\rangle|x \in X \right\} (A~)c={?x,νA~?(x),μA~?(x)?xX}

??(4)?直觉模糊集的交:
A ~ ∩ B ~ = { ? x , μ A ~ ( x ) ∧ μ B ~ ( x ) , ν A ~ ( x ) ∨ ν B ~ ( x ) ? ∣ x ∈ X } \tilde{A} \cap \tilde{B} = \left\{ \left\langle x,\mu_{\tilde{A}}(x)\wedge\mu_{\tilde{B}}(x),\nu_{\tilde{A}}(x)\vee\nu_{\tilde{B}}(x) \right\rangle|x \in X \right\} A~B~={?x,μA~?(x)μB~?(x),νA~?(x)νB~?(x)?xX}
式中,符号“ ∧ \wedge ”“ ∨ \vee ”分别表示取小或取大算子,即 min ? \min min max ? \max max算子。

??(5)?直觉模糊的并:
A ~ ∪ B ~ = { ? x , μ A ~ ( x ) ∨ μ B ~ ( x ) , ν A ~ ( x ) ∧ ν B ~ ( x ) ? ∣ x ∈ X } \tilde{A} \cup \tilde{B} = \left\{ \left\langle x,\mu_{\tilde{A}}(x)\vee\mu_{\tilde{B}}(x),\nu_{\tilde{A}}(x)\wedge\nu_{\tilde{B}}(x) \right\rangle|x \in X \right\} A~B~={?x,μA~?(x)μB~?(x),νA~?(x)νB~?(x)?xX}

??(6)?直觉模糊集的和:
A ~ + B ~ = { ? x , μ A ~ ( x ) + μ B ~ ( x ) ? μ A ~ ( x ) μ B ~ ( x ) , ν A ~ ( x ) ν B ~ ( x ) ? ∣ x ∈ X } \tilde{A} + \tilde{B} = \left\{ \left\langle x,\mu_{\tilde{A}}(x) + \mu_{\tilde{B}}(x) - \mu_{\tilde{A}}(x)\mu_{\tilde{B}}(x),\nu_{\tilde{A}}(x)\nu_{\tilde{B}}(x) \right\rangle|x \in X \right\} A~+B~={?x,μA~?(x)+μB~?(x)?μA~?(x)μB~?(x),νA~?(x)νB~?(x)?xX}

??(7)?直觉模糊集的积:
A ~ ? B ~ = { ? x , μ A ~ ( x ) μ B ~ ( x ) , ν A ~ ( x ) + ν B ~ ( x ) ? μ A ~ ( x ) μ B ~ ( x ) ? ∣ x ∈ X } \tilde{A} \centerdot \tilde{B} = \left\{ \left\langle x,\mu_{\tilde{A}}(x) \mu_{\tilde{B}}(x),\nu_{\tilde{A}}(x) + \nu_{\tilde{B}}(x) - \mu_{\tilde{A}}(x)\mu_{\tilde{B}}(x) \right\rangle|x \in X \right\} A~?B~={?x,μA~?(x)μB~?(x),νA~?(x)+νB~?(x)?μA~?(x)μB~?(x)?xX}

??(8)?直觉模糊集与数的乘积:
λ A ~ = { ? x , 1 ? ( 1 ? μ A ~ ( x ) ) λ , ( ν A ~ ) λ ? ∣ x ∈ X } \lambda \tilde{A} = \left\{ \left\langle x,1-{(1-\mu_{\tilde{A}}(x))}^{\lambda},{(\nu_{\tilde{A}})}^{\lambda} \right\rangle|x \in X \right\} λA~={?x,1?(1?μA~?(x))λ,(νA~?)λ?xX}

??(9)?直觉模糊集的乘方:
( A ~ ) λ = { ? x , ( μ A ~ ) λ , 1 ? ( 1 ? ν A ~ ( x ) ) λ ? ∣ x ∈ X } {(\tilde{A})}^{\lambda} = \left\{ \left\langle x,{(\mu_{\tilde{A}})}^{\lambda},1-{(1-\nu_{\tilde{A}}(x))}^{\lambda} \right\rangle|x \in X \right\} (A~)λ={?x,(μA~?)λ,1?(1?νA~?(x))λ?xX}

??截集是直觉模糊集中的一个重要概念,是建立直觉模糊集与清晰集合之间关系的桥梁。

定义1.9
??设 A ~ = { ? x , μ t i l d e A ( x ) , ν A ~ ( x ) ? ∣ x ∈ X } \tilde{A}=\left\{ \left\langle x,\mu_{tilde{A}}(x),\nu_{\tilde{A}}(x) \right\rangle|x \in X \right\} A~={?x,μtildeA?(x),νA~?(x)?xX}是论域X上的1个直觉模糊集,对任意有序对 ? α , β ? \left\langle\alpha,\beta \right\rangle ?α,β?,其中 α ∈ [ 0 , 1 ] , β ∈ [ 0 , 1 ] \alpha \in [0,1],\beta \in [0,1] α[0,1]β[0,1],且 0 ≤ α + β ≤ 1 0 \leq \alpha + \beta \leq 1 0α+β1,称集合
A ~ ? α , β ? = { x ∣ μ A ~ ( x ) ≥ α , ν A ~ ≤ β , x ∈ X } (2.4) {\tilde{A}}_{\left\langle\alpha,\beta\right\rangle = \left\{x|\mu_{\tilde{A}}(x)\geq\alpha,\nu_{\tilde{A}}\leq\beta, x \in X \right\}}\tag{2.4} A~?α,β?={xμA~?(x)α,νA~?β,xX}?(2.4)
为直觉模糊集 A ~ \tilde{A} A~ ? α , β ? \left\langle\alpha,\beta\right\rangle ?α,β?截集(或水平集), ? α , β ? \left\langle\alpha,\beta\right\rangle ?α,β?称为置信水平或置信度。 α = 1 , β = 0 \alpha=1,\beta=0 α=1,β=0时的截集即 A ~ ? 1 , 0 ? {\tilde{A}}_{\left\langle 1,0\right\rangle} A~?1,0??称为直觉模糊集 A ~ \tilde{A} A~的核; α = 0 , β = 1 \alpha=0,\beta=1 α=0,β=1时的截集即 A ~ ? 0 , 1 ? {\tilde{A}}_{\left\langle0,1\right\rangle} A~?0,1??称为直觉模糊集 A ~ \tilde{A} A~的支撑。

??显然,若两个有序对 ? α 1 , β 1 ? \left\langle{\alpha}_1,{\beta}_1\right\rangle ?α1?,β1?? ? α 2 , β 2 ? \left\langle{\alpha}_2,{\beta}_2\right\rangle ?α2?,β2??满足 ? α 1 , β 1 ? ≤ ? α 2 , β 2 ? \left\langle{\alpha}_1,{\beta}_1\right\rangle\leq\left\langle{\alpha}_2,{\beta}_2\right\rangle ?α1?,β1???α2?,β2??,则有 A ~ ? α 1 , β 1 ? ? A ~ ? α 2 , β 2 ? {\tilde{A}}_{\left\langle{\alpha}_1,{\beta}_1\right\rangle}\subseteq{\tilde{A}}_{\left\langle{\alpha}_2,{\beta}_2\right\rangle} A~?α1?,β1????A~?α2?,β2???
??类似地,可以定义直觉模糊集的 α \alpha α截集核 β \beta β截集:
A ~ α = { x ∣ μ A ~ ( x ) ≥ α , x ∈ X } (2.5) {\tilde{A}}_{\alpha}=\left\{x|\mu_{\tilde{A}}(x)\geq\alpha,x \in X \right\}\tag{2.5} A~α?={xμA~?(x)α,xX}(2.5)
A ~ β = { x ∣ ν A ~ ( x ) ≤ β , x ∈ X } (2.6) {\tilde{A}}_{\beta}=\left\{x|\nu_{\tilde{A}}(x)\leq\beta,x \in X \right\}\tag{2.6} A~β?={xνA~?(x)β,xX}(2.6)
其中, α ∈ [ 0 , 1 ] , β ∈ [ 0 , 1 ] \alpha \in [0,1],\beta \in [0,1] α[0,1]β[0,1]

??由此,可以定义一个新的直觉模糊集:
? α , β ? A ~ ? α , β ? = { ? x , α ∧ μ A ~ ? α , β ? ( x ) , β ∨ ν A ~ α , β ( x ) ? ∣ x ∈ X } \left\langle\alpha,\beta\right\rangle{\tilde{A}}_{\left\langle\alpha,\beta\right\rangle}=\left\{ \left\langle x,\alpha \wedge \mu_{{\tilde{A}}_{\left\langle\alpha,\beta\right\rangle}}(x),\beta \vee \nu_{{\tilde{A}}_{\alpha,\beta}}(x)\right\rangle|x \in X \right\} ?α,β?A~?α,β??={?x,αμA~?α,β???(x),βνA~α,β??(x)?xX}
于是直觉模糊集 A ~ \tilde{A} A~可以用 < ? α , β ? <\left\langle \alpha,\beta \right\rangle <?α,β?截集(或水平集)表示。

定理1.3
??直觉模糊集 A ~ \tilde{A} A~可用截集表示为
A ~ = ? α , β ∈ D { ? α , β ? A ~ ? α , β ? } \tilde{A}=\bigcup_{{\alpha,\beta}\in D}\left\{ \left\langle \alpha,\beta \right\rangle{{\tilde{A}}_{ \left\langle \alpha,\beta \right\rangle}}\right\} A~=α,βD??{?α,β?A~?α,β??}

其中, D = { ? μ s , ν s ? ∣ S ∧ M } D = \{ \left\langle \mu_s,\nu_s \right\rangle|S \wedge M\} D={?μs?,νs??SM} M = { ? μ i , ν i ? ∣ i = 1 , 2 , . . . , m } M = \{ \left\langle\mu_i, \nu_i\right\rangle | i=1,2,...,m \} M={?μi?,νi??i=1,2,...,m} μ s = ? 1 : ? μ i , ν i ? ∈ S { μ i } \mu_{s}=\bigwedge_{1:\left\langle\mu_{i}, \nu_{i}\right\rangle \in S} \left\{\mu_{i}\right\} μs?=?1:?μi?,νi??S?{μi?} ν s = ∨ i : < μ i , ν i > ∈ S { ν i } {\nu_s} = \underset{i:<\mu_i, \nu_i> \in S} {\vee} \{\nu_{i}\} νs?=i:<μi?,νi?>S?{νi?}
??定理1.3表明,直觉模糊集 A ~ \tilde{A} A~可以由若干个清晰的截集(或水平集)表示,它建立了直觉模糊集与清晰集合之间的关系,为利用清晰集合研究直觉模糊集提供了重要基础。

??示例

一箱梨有6个,依次编号为1-6,甲乙分别对每个梨属于成熟和属于不成熟进行评价,得到以下结果:
A 甲 = ( 0 , 6 , 0.4 ) , ( 0.7 , 0.2 ) , ( 0.7 , 0.2 ) , ( 0.8 , 0.1 ) , ( 0.8 , 0.2 ) , ( 0.6 , 0.3 ) A_{甲}={(0,6,0.4),(0.7,0.2),(0.7,0.2),(0.8,0.1),(0.8,0.2),(0.6,0.3)} A?=(0,6,0.4),(0.7,0.2),(0.7,0.2),(0.8,0.1),(0.8,0.2),(0.6,0.3)
A 乙 = ( 0 , 6 , 0.3 ) , ( 0.6 , 0.3 ) , ( 0.6 , 0.2 ) , ( 0.7 , 0.2 ) , ( 0.7 , 0.2 ) , ( 0.7 , 0.2 ) A_{乙}={(0,6,0.3),(0.6,0.3),(0.6,0.2),(0.7,0.2),(0.7,0.2),(0.7,0.2)} A?=(0,6,0.3),(0.6,0.3),(0.6,0.2),(0.7,0.2),(0.7,0.2),(0.7,0.2)

??计算代码(python)如下:

# 注意,第一行表示属于,第二行表示不属于
import numpy as np
A = [[0.6,0.7,0.7,0.8,0.8,0.6],[0.4,0.2,0.2,0.1,0.2,0.3]]
B = [[0.6,0.6,0.6,0.7,0.7,0.7],[0.3,0.3,0.2,0.2,0.2,0.2]]

A = np.array(A)
B = np.array(B)

# 判断A、B之间的包含关系
def A_in_B(A,B):
    label_A_B = np.zeros(A.shape[1])
    label_B_A = np.zeros(A.shape[1])
    shape = A.shape
    for i in range(shape[1]): #每一列对比
        A_belong = A[0][i]
        A_not_belong = A[1][i]
        B_belong = B[0][i]
        B_not_belong = B[1][i]
        if A_belong <= B_belong and A_not_belong >= B_not_belong:
            label_A_B[i] = 1
        elif A_belong >= B_belong and A_not_belong <= B_not_belong:
            label_B_A[i] = 1
    sum_A = label_A_B.sum()
    sum_B = label_B_A.sum()
    if int(sum_A) == A.shape[1]:
        print('A belongs to B!')
    elif int(sum_B) == A.shape[1]:
        print('B belongs to A!')
    else:
        print('No belongs')
# 测试
print('=========包含关系结果==========')           
A_in_B(A,B)
print('\n')

## 求补集
def get_complement(arr):
    return [arr[1],arr[0]]
#测试
A_c = get_complement(A)
B_c = get_complement(B)
print('=========补集计算结果==========')
print("直觉模糊集A的补集为:\n{}".format(A_c))
print("直觉模糊集B的补集为:\n{}".format(B_c))
print('\n')

## 求交集
def get_intersection(A,B):
    intersection = np.zeros(A.shape)
    for i in range(A.shape[1]):
        intersection[0][i] = min(A[0][i],B[0][i])
        intersection[1][i] = max(A[1][i],B[1][i])
    return intersection
# 测试
print('=========交集计算结果==========')
intersection = get_intersection(A,B)
print("直觉模糊集A和直觉模糊集B的交集为:\n{}".format(intersection))
print('\n')

## 求并集
def get_union(A,B):
    union = np.zeros(A.shape)
    for i in range(A.shape[1]):
        union[0][i] = max(A[0][i],B[0][i])
        union[1][i] = max(A[1][i],B[1][i])
    return union
# 测试
print('=========并集计算结果==========')
union = get_union(A,B)
print("直觉模糊集A和直觉模糊集B的并集为:\n{}".format(union))
print('\n')

## 求和
def get_sum(A,B):
    sum_R = np.zeros(A.shape)
    for i in range(A.shape[1]):
        sum_R[0][i] = A[0][i] + B[0][i] - A[0][i] * B[0][i]
        sum_R[1][i] = A[1][i] * B[1][i]
    return sum_R
# 测试
print('=========求和计算结果==========')
sum_r = get_sum(A,B)
print("直觉模糊集A和直觉模糊集B的和为:\n{}".format(sum_r))
print('\n')

## 求积
def get_quadrature(A,B):
    quadrature = np.zeros(A.shape)
    for i in range(A.shape[1]):
        quadrature[0][i] = A[0][i] * B[0][i]
        quadrature[1][i] = A[1][i] + B[1][i] - A[1][i] * B[1][i]
    return quadrature
# 测试
print('=========并积计算结果==========')
quadrature = get_quadrature(A,B)
print("直觉模糊集A和直觉模糊集B的积为:\n{}".format(quadrature))
print('\n')

## 数乘
def get_number_multiplication(arr,factor):
    multi_fator = np.zeros(arr.shape)
    for i in range(arr.shape[1]):
        multi_fator[0][i] = 1 - np.power(1 - arr[0][i],factor)
        multi_fator[1][i] = np.power(arr[1][i],factor)
    return multi_fator
#测试
A_nm = get_number_multiplication(A,0.6)
B_nm = get_number_multiplication(B,0.6)
print('=========数乘计算结果==========')
print("直觉模糊集A的数乘(×0.6)结果为:\n{}".format(A_nm))
print("直觉模糊集B的数乘(×0.6)结果为:\n{}".format(B_nm))
print('\n')

## 乘方
def get_power_number(arr,factor):
    power_factor = np.zeros(arr.shape)
    for i in range(arr.shape[1]):
        power_factor[0][i] = np.power(arr[0][i],factor)
        power_factor[1][i] = 1 - np.power(1 - arr[1][i],factor)
    return power_factor
#测试
A_pn = get_power_number(A,0.6)
B_pn = get_power_number(B,0.6)
print('=========乘方计算结果==========')
print("直觉模糊集A的乘方(×0.6)结果为:\n{}".format(A_pn))
print("直觉模糊集B的乘方(×0.6)结果为:\n{}".format(B_pn))
print('\n')

??运行结果为:

= = = = = = = = = 包 含 关 系 结 果 = = = = = = = = = = =========包含关系结果========== ===================
No belongs
= = = = = = = = = 补 集 计 算 结 果 = = = = = = = = = = =========补集计算结果========== ===================
直觉模糊集A的补集为:
[array([0.4, 0.2, 0.2, 0.1, 0.2, 0.3]), array([0.6, 0.7, 0.7, 0.8, 0.8, 0.6])]
直觉模糊集B的补集为:
[array([0.3, 0.3, 0.2, 0.2, 0.2, 0.2]), array([0.6, 0.6, 0.6, 0.7, 0.7, 0.7])]
= = = = = = = = = 交 集 计 算 结 果 = = = = = = = = = = =========交集计算结果========== ===================
直觉模糊集A和直觉模糊集B的交集为:
[[0.6 0.6 0.6 0.7 0.7 0.6]
[0.4 0.3 0.2 0.2 0.2 0.3]]
= = = = = = = = = 并 集 计 算 结 果 = = = = = = = = = = =========并集计算结果========== ===================
直觉模糊集A和直觉模糊集B的并集为:
[[0.6 0.7 0.7 0.8 0.8 0.7]
[0.4 0.3 0.2 0.2 0.2 0.3]]
= = = = = = = = = 求 和 计 算 结 果 = = = = = = = = = = =========求和计算结果========== ===================
直觉模糊集A和直觉模糊集B的和为:
[[0.84 0.88 0.88 0.94 0.94 0.88]
[0.12 0.06 0.04 0.02 0.04 0.06]]
= = = = = = = = = 并 积 计 算 结 果 = = = = = = = = = = =========并积计算结果========== ===================
直觉模糊集A和直觉模糊集B的积为:
[[0.36 0.42 0.42 0.56 0.56 0.42]
[0.58 0.44 0.36 0.28 0.36 0.44]]
= = = = = = = = = 数 乘 计 算 结 果 = = = = = = = = = = =========数乘计算结果========== ===================
直觉模糊集A的数乘(×0.6)结果为:
[[0.42292004 0.51440663 0.51440663 0.61926921 0.61926921 0.42292004]
[0.57707996 0.38073079 0.38073079 0.25118864 0.38073079 0.48559337]]
直觉模糊集B的数乘(×0.6)结果为:
[[0.42292004 0.42292004 0.42292004 0.51440663 0.51440663 0.51440663]
[0.48559337 0.48559337 0.38073079 0.38073079 0.38073079 0.38073079]]
= = = = = = = = = 乘 方 计 算 结 果 = = = = = = = = = = =========乘方计算结果========== ===================
直觉模糊集A的乘方(×0.6)结果为:
[[0.73602192 0.80734438 0.80734438 0.87468966 0.87468966 0.73602192]
[0.26397808 0.12531034 0.12531034 0.06125961 0.12531034 0.19265562]]
直觉模糊集B的乘方(×0.6)结果为:
[[0.73602192 0.73602192 0.73602192 0.80734438 0.80734438 0.80734438]
[0.19265562 0.19265562 0.12531034 0.12531034 0.12531034 0.12531034]]


2.3 直觉模糊集的相似度与距离

??相似度与距离是直觉模糊集理论中的一对对偶概念,用以反映两个直觉模糊集之间的接近程度和差异程度。
定义1.10
??设 s : F ( X ) × F ( X ) → [ 0 , 1 ] s: F(X) × F(X) \rightarrow [0,1] s:F(X)×F(X)[0,1]是一映射,对于任意直觉模糊集 A ~ ∈ F ( X ) \tilde{A} \in F(X) A~F(X) B ~ ∈ F ( X ) \tilde{B} \in F(X) B~F(X) C ~ ∈ F ( X ) \tilde{C} \in F(X) C~F(X),称 s ( A ~ , B ~ ) s(\tilde{A},\tilde{B}) s(A~,B~)为直觉模糊集 A ~ \tilde{A} A~ B ~ \tilde{B} B~的相似度,如果它满足条件:

??(1)? 0 ≤ s ( A ~ , B ~ ) ≤ 1 0 \leq s(\tilde{A},\tilde{B}) \leq 1 0s(A~,B~)1

??(2)? s ( A ~ , B ~ ) = 1 s(\tilde{A},\tilde{B})=1 s(A~,B~)=1当且仅当 A ~ = B ~ \tilde{A}=\tilde{B} A~=B~

??(3)? s ( A ~ , B ~ ) = s ( B ~ , A ~ ) s(\tilde{A},\tilde{B}) = s(\tilde{B},\tilde{A}) s(A~,B~)=s(B~,A~)

??(4)? 如果 A ~ ? B ~ ? C ~ \tilde{A}\subseteq \tilde{B} \subseteq \tilde{C} A~?B~?C~,则 s ( A ~ , C ~ ) ≤ s ( A ~ , B ~ ) s(\tilde{A},\tilde{C}) \leq s(\tilde{A},\tilde{B}) s(A~,C~)s(A~,B~) s ( A ~ , C ~ ) ≤ s ( B ~ , C ~ ) s(\tilde{A},\tilde{C}) \leq s(\tilde{B},\tilde{C}) s(A~,C~)s(B~,C~)

??根据定义1.10,对于有限论域 X = x 1 , x 2 , . . . , x n X={x_1,x_2,...,x_n} X=x1?,x2?,...,xn?上的两个直觉模糊集 A ~ \tilde{A} A~ B ~ \tilde{B} B~,可构造以下相似度测度。

??闵可夫斯基相似度:
s q ( A ~ , B ~ ) = 1 ? [ 1 2 n ∑ j = 1 n [ ( μ A ~ ( x j ) ? μ B ~ ( x j ) ) q + ( ν A ~ ( x j ) ? ν B ~ ( x j ) ) q + ( π A ~ ( x j ) ? π B ~ ( x j ) ) q ] ] 1 / q s_{q}(\tilde{A}, \tilde{B})=1-\left[\frac{1}{2 n} \sum_{j=1}^{n}\left[\left(\mu_{\tilde{A}}\left(x_{j}\right)-\mu_{\tilde{B}}\left(x_{j}\right)\right)^{q}+\left(\nu_{\tilde{A}}\left(x_{j}\right)-\nu_{\tilde{B}}\left(x_{j}\right)\right)^{q}+\left(\pi_{\tilde{A}}\left(x_{j}\right)-\pi_{\tilde{B}}\left(x_{j}\right)\right)^{q}\right]\right]^{1 / q} sq?(A~,B~)=1?[2n1?j=1n?[(μA~?(xj?)?μB~?(xj?))q+(νA~?(xj?)?νB~?(xj?))q+(πA~?(xj?)?πB~?(xj?))q]]1/q

??汉明相似度:
s 1 ( A ~ , B ~ ) = 1 ? [ 1 2 n ∑ j = 1 n [ ∣ μ A ~ ( x j ) ? μ B ~ ( x j ) ∣ + ∣ ( ν A ~ ( x j ) ? ν B ~ ( x j ) ∣ + ∣ ( π A ~ ( x j ) ? π B ~ ( x j ) ∣ ] ] s_{1}(\tilde{A}, \tilde{B})=1-\left[\frac{1}{2 n} \sum_{j=1}^{n}\left[\left|\mu_{\tilde{A}}\left(x_{j}\right)-\mu_{\tilde{B}}\left(x_{j}\right)\right|+\mid\left(\nu_{\tilde{A}}\left(x_{j}\right)-\nu_{\tilde{B}}\left(x_{j}\right)|+|\left(\pi_{\tilde{A}}\left(x_{j}\right)-\pi_{\tilde{B}}\left(x_{j}\right) \mid\right]\right]\right.\right. s1?(A~,B~)=1?[2n1?j=1n?[μA~?(xj?)?μB~?(xj?)+(νA~?(xj?)?νB~?(xj?)+(πA~?(xj?)?πB~?(xj?)]]

??欧几里得相似度:
s 2 ( A ~ , B ~ ) = 1 ? [ 1 2 n ∑ j = 1 n [ ( μ A ~ ( x j ) ? μ B ~ ( x j ) ) 2 + ( ν λ ( x j ) ? ν B ~ ( x j ) ) 2 + ( π A ~ ( x j ) ? π B ~ ( x j ) ) 2 ] ] 1 / 2 s_{2}(\tilde{A}, \tilde{B})=1-\left[\frac{1}{2 n} \sum_{j=1}^{n}\left[\left(\mu_{\tilde{A}}\left(x_{j}\right)-\mu_{\tilde{B}}\left(x_{j}\right)\right)^{2}+\left(\nu_{\lambda}\left(x_{j}\right)-\nu_{\tilde{B}}\left(x_{j}\right)\right)^{2}+\left(\pi_{\tilde{A}}\left(x_{j}\right)-\pi_{\tilde{B}}\left(x_{j}\right)\right)^{2}\right]\right]^{1 / 2} s2?(A~,B~)=1?[2n1?j=1n?[(μA~?(xj?)?μB~?(xj?))2+(νλ?(xj?)?νB~?(xj?))2+(πA~?(xj?)?πB~?(xj?))2]]1/2

??切比雪夫相似度:
s + ∞ ( A ~ , B ~ ) = 1 ? max ? 1 ? j ? n { ∣ μ A ~ ( x j ) ? μ B ~ ( x j ) ∣ + ∣ ν A ~ ( x j ) ? ν B ~ ( x j ) ∣ + ∣ π A ~ ( x j ) ? π B ~ ( x j ) ∣ 2 n } s_{+\infty}(\tilde{A}, \tilde{B})=1-\max _{1 \leqslant j \leqslant n}\left\{\frac{\left|\mu_{\tilde{A}}\left(x_{j}\right)-\mu_{\tilde{B}}\left(x_{j}\right)\right|+\left|\nu_{\tilde{A}}\left(x_{j}\right)-\nu_{\tilde{B}}\left(x_{j}\right)\right|+\left|\pi_{\tilde{A}}\left(x_{j}\right)-\pi_{\tilde{B}}\left(x_{j}\right)\right|}{2 n}\right\} s+?(A~,B~)=1?1?j?nmax?{2nμA~?(xj?)?μB~?(xj?)+νA~?(xj?)?νB~?(xj?)+πA~?(xj?)?πB~?(xj?)?}

??如果考虑权重因素,可分别得到直觉模糊集 A ~ \tilde{A} A~ B ~ \tilde{B} B~的加权闵可夫斯基相似度 s ˉ q ( A ~ , B ~ ) \bar{s}_{q}(\tilde{A}, \tilde{B}) sˉq?(A~,B~)、加权汉明相似度 s ˉ 1 ( A ~ , B ~ ) \bar{s}_{1}(\tilde{A}, \tilde{B}) sˉ1?(A~,B~)、加权欧几里得相似度 s ˉ 2 ( A ~ , B ~ ) \bar{s}_{2}(\tilde{A}, \tilde{B}) sˉ2?(A~,B~)、加权切比雪夫相似度 s ˉ + ∞ ( A ~ , B ~ ) \bar{s}_{+\infty}(\tilde{A}, \tilde{B}) sˉ+?(A~,B~)等。

定义1.11
??设 d : F ( X ) × F ( X ) → [ 0 , 1 ] d: F(X) \times F(X) \rightarrow[0,1] d:F(X)×F(X)[0,1]是一映射,对于任意直觉模糊集 A ~ = F ( X ) \tilde{A}=F(X) A~=F(X) B ~ = F ( X ) \tilde{B}=F(X) B~=F(X) C ~ = F ( X ) \tilde{C}=F(X) C~=F(X),称 d ( A ~ , B ~ ) d(\tilde{A},\tilde{B}) d(A~,B~)为直觉模糊集 A ~ \tilde{A} A~ B ~ \tilde{B} B~的距离,如果它满足条件:

??(1)? 0 ? d ( A ~ , B ~ ) ? 1 0 \leqslant d(\tilde{A}, \tilde{B}) \leqslant 1 0?d(A~,B~)?1

??(2)? d ( A ~ , B ~ ) = 0 d(\tilde{A}, \tilde{B})=0 d(A~,B~)=0当且仅当 A ~ = B ~ \tilde{A} = \tilde{B} A~=B~

??(3)? d ( A ~ , B ~ ) = d ( B ~ , A ~ ) d(\tilde{A}, \tilde{B})=d(\tilde{B}, \tilde{A}) d(A~,B~)=d(B~,A~)

??(4)? 如果 A ~ ? B ~ ? C ~ \tilde{A} \subseteq \tilde{B} \subseteq \tilde{C} A~?B~?C~,则 d ( A ~ , C ~ ) ? d ( A ~ , B ~ ) d(\tilde{A}, \tilde{C}) \geqslant d(\tilde{A}, \tilde{B}) d(A~,C~)?d(A~,B~) d ( A ~ , C ~ ) ? d ( C ~ , B ~ ) d(\tilde{A}, \tilde{C}) \geqslant d(\tilde{C}, \tilde{B}) d(A~,C~)?d(C~,B~)

定理1.4
??如果 s ( A ~ , B ~ ) s(\tilde{A},\tilde{B}) s(A~,B~)为直觉模糊集 A ~ \tilde{A} A~ B ~ \tilde{B} B~的归一化距离,则 s ( A ~ , B ~ ) = 1 ? d ( A ~ , B ~ ) s(\tilde{A},\tilde{B})=1-d(\tilde{A},\tilde{B}) s(A~,B~)=1?d(A~,B~) A ~ \tilde{A} A~ B ~ \tilde{B} B~的相似度。

定理1.5
??根据直觉模糊集 A ~ \tilde{A} A~ B ~ \tilde{B} B~的相似度测度公式,对应地可以得到 A ~ \tilde{A} A~ B ~ \tilde{B} B~的归一化距离。

??闵可夫斯基距离:
d q ( A ~ , B ~ ) = [ 1 2 n ∑ j = 1 n [ ( μ A ~ ( x j ) ? μ B ~ ( x j ) ) q + ( ν A ~ ( x j ) ? ν B ~ ( x j ) ) q + ( π A ~ ( x j ) ? π B ~ ( x j ) ) q ] ] 1 / q d_{q}(\tilde{A}, \tilde{B})=\left[\frac{1}{2 n} \sum_{j=1}^{n}\left[\left(\mu_{\tilde{A}}\left(x_{j}\right)-\mu_{\tilde{B}}\left(x_{j}\right)\right)^{q}+\left(\nu_{\tilde{A}}\left(x_{j}\right)-\nu_{\tilde{B}}\left(x_{j}\right)\right)^{q}+\left(\pi_{\tilde{A}}\left(x_{j}\right)-\pi_{\tilde{B}}\left(x_{j}\right)\right)^{q}\right]\right]^{1 / q} dq?(A~,B~)=[2n1?j=1n?[(μA~?(xj?)?μB~?(xj?))q+(νA~?(xj?)?νB~?(xj?))q+(πA~?(xj?)?πB~?(xj?))q]]1/q

??汉明距离:
d 1 ( A ~ , B ~ ) = [ 1 2 n ∑ j = 1 n [ ∣ μ A ~ ( x j ) ? μ B ~ ( x j ) ∣ + ∣ ( ν A ~ ( x j ) ? ν B ~ ( x j ) ∣ + ∣ ( π A ~ ( x j ) ? π B ~ ( x j ) ∣ ] ] d_{1}(\tilde{A}, \tilde{B})=\left[\frac{1}{2 n} \sum_{j=1}^{n}\left[\left|\mu_{\tilde{A}}\left(x_{j}\right)-\mu_{\tilde{B}}\left(x_{j}\right)\right|+\mid\left(\nu_{\tilde{A}}\left(x_{j}\right)-\nu_{\tilde{B}}\left(x_{j}\right)|+|\left(\pi_{\tilde{A}}\left(x_{j}\right)-\pi_{\tilde{B}}\left(x_{j}\right) \mid\right]\right]\right.\right. d1?(A~,B~)=[2n1?j=1n?[μA~?(xj?)?μB~?(xj?)+(νA~?(xj?)?νB~?(xj?)+(πA~?(xj?)?πB~?(xj?)]]

??欧几里得距离:
d 2 ( A ~ , B ~ ) = [ 1 2 n ∑ j = 1 n [ ( μ A ~ ( x j ) ? μ B ~ ( x j ) ) 2 + ( ν A ~ ( x j ) ? ν B ~ ( x j ) ) 2 + ( π A ~ ( x j ) ? π B ~ ( x j ) ) 2 ] ] 1 / 2 d_{2}(\tilde{A}, \tilde{B})=\left[\frac{1}{2 n} \sum_{j=1}^{n}\left[\left(\mu_{\tilde{A}}\left(x_{j}\right)-\mu_{\tilde{B}}\left(x_{j}\right)\right)^{2}+\left(\nu_{\tilde{A}}\left(x_{j}\right)-\nu_{\tilde{B}}\left(x_{j}\right)\right)^{2}+\left(\pi_{\tilde{A}}\left(x_{j}\right)-\pi_{\tilde{B}}\left(x_{j}\right)\right)^{2}\right]\right]^{1 / 2} d2?(A~,B~)=[2n1?j=1n?[(μA~?(xj?)?μB~?(xj?))2+(νA~?(xj?)?νB~?(xj?))2+(πA~?(xj?)?πB~?(xj?))2]]1/2

??切比雪夫距离:
d + ∞ ( A ~ , B ~ ) = max ? 1 ? j ? n { ∣ μ A ~ ( x j ) ? μ B ~ ( x j ) ∣ + ∣ ν A ~ ( x j ) ? ν B ~ ( x j ) ∣ + ∣ π A ~ ( x j ) ? π B ~ ( x j ) ∣ 2 n } d_{+\infty}(\tilde{A}, \tilde{B})=\max _{1 \leqslant j \leqslant n}\left\{\frac{\left|\mu_{\tilde{A}}\left(x_{j}\right)-\mu_{\tilde{B}}\left(x_{j}\right)\right|+\left|\nu_{\tilde{A}}\left(x_{j}\right)-\nu_{\tilde{B}}\left(x_{j}\right)\right|+\left|\pi_{\tilde{A}}\left(x_{j}\right)-\pi_{\tilde{B}}\left(x_{j}\right)\right|}{2 n}\right\} d+?(A~,B~)=1?j?nmax?{2nμA~?(xj?)?μB~?(xj?)+νA~?(xj?)?νB~?(xj?)+πA~?(xj?)?πB~?(xj?)?}

??加权闵可夫斯基距离:
d ˉ q ( A ~ , B ~ ) = [ 1 2 ∑ j = 1 n ω j [ ( μ A ~ ( x j ) ? μ B ~ ( x j ) ) q + ( ν A ~ ( x j ) ? ν B ~ ( x j ) ) q + ( π A ~ ( x j ) ? π B ~ ( x j ) ) q ] ] 1 / q \bar{d}_{q}(\tilde{A}, \tilde{B})=\left[\frac{1}{2} \sum_{j=1}^{n} \omega_{j}\left[\left(\mu_{\tilde{A}}\left(x_{j}\right)-\mu_{\tilde{B}}\left(x_{j}\right)\right)^{q}+\left(\nu_{\tilde{A}}\left(x_{j}\right)-\nu_{\tilde{B}}\left(x_{j}\right)\right)^{q}+\left(\pi_{\tilde{A}}\left(x_{j}\right)-\pi_{\tilde{B}}\left(x_{j}\right)\right)^{q}\right]\right]^{1 / q} dˉq?(A~,B~)=[21?j=1n?ωj?[(μA~?(xj?)?μB~?(xj?))q+(νA~?(xj?)?νB~?(xj?))q+(πA~?(xj?)?πB~?(xj?))q]]1/q

??加权汉明距离:
d ˉ 1 ( A ~ , B ~ ) = 1 2 ∑ j = 1 n ω j [ ∣ μ A ~ ( x j ) ? μ B ~ ( x j ) ∣ + ∣ ( ν A ~ ( x j ) ? ν B ~ ( x j ) ∣ + ∣ ( π A ~ ( x j ) ? π B ~ ( x j ) ∣ ] \bar{d}_{1}(\tilde{A}, \tilde{B})=\frac{1}{2} \sum_{j=1}^{n} \omega_{j}\left[\left|\mu_{\tilde{A}}\left(x_{j}\right)-\mu_{\tilde{B}}\left(x_{j}\right)\right|+\mid\left(\nu_{\tilde{A}}\left(x_{j}\right)-\nu_{\tilde{B}}\left(x_{j}\right)|+|\left(\pi_{\tilde{A}}\left(x_{j}\right)-\pi_{\tilde{B}}\left(x_{j}\right) \mid\right]\right.\right. dˉ1?(A~,B~)=21?j=1n?ωj?[μA~?(xj?)?μB~?(xj?)+(νA~?(xj?)?νB~?(xj?)+(πA~?(xj?)?πB~?(xj?)]

??加权欧几里得距离:
d ˉ 2 ( A ~ , B ~ ) = [ 1 2 ∑ j = 1 n ω j [ ( μ λ ( x j ) ? μ B ~ ( x j ) ) 2 + ( ν A ~ ( x j ) ? ν B ~ ( x j ) ) 2 + ( π A ~ ( x j ) ? π B ~ ( x j ) ) 2 ] ] 1 / 2 \bar{d}_{2}(\tilde{A}, \tilde{B})=\left[\frac{1}{2} \sum_{j=1}^{n} \omega_{j}\left[\left(\mu_{\lambda}\left(x_{j}\right)-\mu_{\tilde{B}}\left(x_{j}\right)\right)^{2}+\left(\nu_{\tilde{A}}\left(x_{j}\right)-\nu_{\tilde{B}}\left(x_{j}\right)\right)^{2}+\left(\pi_{\tilde{A}}\left(x_{j}\right)-\pi_{\tilde{B}}\left(x_{j}\right)\right)^{2}\right]\right]^{1 / 2} dˉ2?(A~,B~)=[21?j=1n?ωj?[(μλ?(xj?)?μB~?(xj?))2+(νA~?(xj?)?νB~?(xj?))2+(πA~?(xj?)?πB~?(xj?))2]]1/2

??加权切比雪夫距离:
d ˉ + ∞ ( A ~ , B ~ ) = max ? 1 ? j ? n { ω j ( ∣ μ A ~ ( x j ) ? μ B ~ ( x j ) ∣ + ∣ ν λ ~ ( x j ) ? ν B ~ ( x j ) ∣ + ∣ π λ ( x j ) ? π B ~ ( x j ) ∣ ) 2 } \bar{d}_{+\infty}(\tilde{A}, \tilde{B})=\max _{1 \leqslant j \leqslant n}\left\{\frac{\omega_{j}\left(\left|\mu_{\tilde{A}}\left(x_{j}\right)-\mu_{\tilde{B}}\left(x_{j}\right)\right|+\left|\nu_{\tilde{\lambda}}\left(x_{j}\right)-\nu_{\tilde{B}}\left(x_{j}\right)\right|+\left|\pi_{\lambda}\left(x_{j}\right)-\pi_{\tilde{B}}\left(x_{j}\right)\right|\right)}{2}\right\} dˉ+?(A~,B~)=1?j?nmax?{2ωj?(μA~?(xj?)?μB~?(xj?)+?νλ~?(xj?)?νB~?(xj?)?+πλ?(xj?)?πB~?(xj?))?}

??计算代码(python)如下:

## 相似度或距离计算
# 注意,第一行表示属于,第二行表示不属于
import numpy as np

A = [[0.6,0.7,0.7,0.8,0.8,0.6],[0.4,0.2,0.2,0.1,0.2,0.3]]
B = [[0.6,0.6,0.6,0.7,0.7,0.7],[0.3,0.3,0.2,0.2,0.2,0.2]]

A = np.array(A)
B = np.array(B)

def get_distance(arr_A,arr_B,dist_type,q_value=0):
    # 闵可夫斯基距离
    if dist_type == 'q':
        temp = 0
        for i in range(arr_A.shape[1]):
            temp += np.power(arr_A[0][i] - arr_B[0][i],q_value) + \
                    np.power(arr_A[1][i] - arr_B[1][i],q_value) + \
                    np.power(arr_B[0][i] + arr_B[1][i] - arr_A[0][i] - arr_A[1][i],q_value)
        return np.power(temp/(2*arr_A.shape[1]),1/q_value)
    # 汉明距离
    if dist_type == '1':
        temp = 0
        for i in range(arr_A.shape[1]):
            temp += np.abs(arr_A[0][i] - arr_B[0][i]) + \
                    np.abs(arr_A[1][i] - arr_B[1][i]) + \
                    np.abs(arr_B[0][i] + arr_B[1][i] - arr_A[0][i] - arr_A[1][i])
        return temp/(2*arr_A.shape[1])
    # 欧几里得距离
    if dist_type == '2':
        temp = 0
        for i in range(arr_A.shape[1]):
            temp += np.power(arr_A[0][i] - arr_B[0][i],2) + \
                    np.power(arr_A[1][i] - arr_B[1][i],2) + \
                    np.power(arr_B[0][i] + arr_B[1][i] - arr_A[0][i] - arr_A[1][i],2)
        return np.power(temp/(2*arr_A.shape[1]),1/2)
    # 切比雪夫距离
    if dist_type == 'infty':
        temp_max = 0
        for i in range(arr_A.shape[1]):
            value = np.abs(arr_A[0][i] - arr_B[0][i]) + \
                    np.abs(arr_A[1][i] - arr_B[1][i]) + \
                    np.abs(arr_B[0][i] + arr_B[1][i] - arr_A[0][i] - arr_A[1][i])
            if value/(2*arr_A.shape[1]) > temp_max:
                temp_max = value/(2*arr_A.shape[1])
        return temp_max
def get_similarity(arr_A,arr_B,sim_type,q_value=0):
    return 1 - get_distance(arr_A,arr_B,sim_type,q_value)

# 测试
print('=========闵可夫斯基距离与相似度==========')
d_q = get_distance(A,B,'q',q_value=5)
print("直觉模糊集A和直觉模糊集B之间的闵可夫斯基距离为:{}\t相似度为:{}".format(d_q,1-d_q))
print('\n')
print('=========汉明距离与相似度==========')
d_1 = get_distance(A,B,'1')
print("直觉模糊集A和直觉模糊集B之间的汉明距离为:{}\t相似度为:{}".format(d_1,1-d_1))
print('\n')
print('=========欧几里得距离与相似度==========')
d_2 = get_distance(A,B,'2')
print("直觉模糊集A和直觉模糊集B之间的欧几里得距离为:{}\t相似度为:{}".format(d_2,1-d_2))
print('\n')
print('=========切比雪夫距离与相似度==========')
d_infty = get_distance(A,B,'infty')
print("直觉模糊集A和直觉模糊集B之间的切比雪夫距离为:{}\t相似度为:{}".format(d_infty,1-d_infty))
print('\n')

??计算结果如下:

= = = = = = = = = 闵 可 夫 斯 基 距 离 与 相 似 度 = = = = = = = = = = =========闵可夫斯基距离与相似度========== ===================
直觉模糊集A和直觉模糊集B之间的闵可夫斯基距离为:6.464989264213939e-05 相似度为:0.9999353501073579
= = = = = = = = = 汉 明 距 离 与 相 似 度 = = = = = = = = = = ========= 汉明距离与相似度 ========== ===================
直觉模糊集A和直觉模糊集B之间的汉明距离为:0.10000000000000003 相似度为:0.8999999999999999
= = = = = = = = = 欧 几 里 得 距 离 与 相 似 度 = = = = = = = = = = =========欧几里得距离与相似度========== ===================
直觉模糊集A和直觉模糊集B之间的欧几里得距离为:0.10000000000000002 相似度为:0.9
= = = = = = = = = 切 比 雪 夫 距 离 与 相 似 度 = = = = = = = = = = =========切比雪夫距离与相似度========== ===================
直觉模糊集A和直觉模糊集B之间的切比雪夫距离为:0.016666666666666687 相似度为:0.9833333333333333

2.4 直觉模糊数及其运算

??为方便起见,称 α ~ = ( μ α ~ , ν α ~ ) \tilde{\alpha}=(\mu_{\tilde{\alpha}},\nu_{\tilde{\alpha}}) α~=(μα~?,να~?)为直觉模糊数,其中
μ α ~ ∈ [ 0 , 1 ] , ν α ~ ∈ [ 0 , 1 ] , μ α ~ + ν α ~ ≤ 1 \mu_{\tilde{\alpha}} \in [0,1], \nu_{\tilde{\alpha}} \in [0,1], \mu_{\tilde{\alpha}} + \nu_{\tilde{\alpha}} \leq 1 μα~?[0,1],να~?[0,1],μα~?+να~?1
显然, α ~ + = ( 1 , 0 ) {\tilde{\alpha}}^{+}=(1,0) α~+=(1,0)是最大的直觉模糊数,而 α ~ ? = ( 1 , 0 ) {\tilde{\alpha}}^{-}=(1,0) α~?=(1,0)是最小的直觉模糊数。

定义1.12
??设 α ~ 1 = ( μ α ~ 1 , ν α ~ 1 ) {\tilde{\alpha}}_{1} = (\mu_{\tilde{\alpha}_{1}},\nu_{\tilde{\alpha}_{1}}) α~1?=(μα~1??,να~1??) α ~ 2 = ( μ α ~ 2 , ν α ~ 2 ) {\tilde{\alpha}}_{2} = (\mu_{\tilde{\alpha}_{2}},\nu_{\tilde{\alpha}_{2}}) α~2?=(μα~2??,να~2??)为两个直觉模糊数, s ( α ~ 1 ) = μ α ~ 1 ? ν α ~ 1 s({\tilde{\alpha}}_{1})=\mu_{\tilde{\alpha}_{1}} - \nu_{\tilde{\alpha}_{1}} s(α~1?)=μα~1???να~1?? s ( α ~ 2 ) = μ α ~ 2 ? ν α ~ 2 s({\tilde{\alpha}}_{2})=\mu_{\tilde{\alpha}_{2}} - \nu_{\tilde{\alpha}_{2}} s(α~2?)=μα~2???να~2??分别为 α ~ 1 {\tilde{\alpha}}_{1} α~1? α ~ 2 {\tilde{\alpha}}_{2} α~2?的得分值, h ( α ~ 1 ) = μ α ~ 1 + ν α ~ 1 h({\tilde{\alpha}}_{1})=\mu_{\tilde{\alpha}_{1}} + \nu_{\tilde{\alpha}_{1}} h(α~1?)=μα~1??+να~1?? h ( α ~ 2 ) = μ α ~ 2 + ν α ~ 2 h({\tilde{\alpha}}_{2})=\mu_{\tilde{\alpha}_{2}} + \nu_{\tilde{\alpha}_{2}} h(α~2?)=μα~2??+να~2??分别为 α ~ 1 {\tilde{\alpha}}_{1} α~1? α ~ 2 {\tilde{\alpha}}_{2} α~2?的精确度,则

??(1)?若 s ( α ~ 1 ) < s ( α ~ 2 ) s({\tilde{\alpha}}_{1}) \lt s({\tilde{\alpha}}_{2}) s(α~1?)<s(α~2?),则 α ~ 1 {\tilde{\alpha}}_{1} α~1?小于 α ~ 2 {\tilde{\alpha}}_{2} α~2?,即 α ~ 1 < α ~ 2 {\tilde{\alpha}}_{1} \lt {\tilde{\alpha}}_{2} α~1?<α~2?

??(2)?若 s ( α ~ 1 ) = s ( α ~ 2 ) s({\tilde{\alpha}}_{1}) = s({\tilde{\alpha}}_{2}) s(α~1?)=s(α~2?),则
????①?若 h ( α ~ 1 ) = h ( α ~ 2 ) h({\tilde{\alpha}}_{1}) = h({\tilde{\alpha}}_{2}) h(α~1?)=h(α~2?),则 α ~ 1 = α ~ 2 {\tilde{\alpha}}_{1} = {\tilde{\alpha}}_{2} α~1?=α~2?
????②?若 h ( α ~ 1 ) ≤ h ( α ~ 2 ) h({\tilde{\alpha}}_{1}) \le h({\tilde{\alpha}}_{2}) h(α~1?)h(α~2?),则 α ~ 1 ≤ α ~ 2 {\tilde{\alpha}}_{1} \le {\tilde{\alpha}}_{2} α~1?α~2?
????③?若 h ( α ~ 1 ) > h ( α ~ 2 ) h({\tilde{\alpha}}_{1}) \gt h({\tilde{\alpha}}_{2}) h(α~1?)>h(α~2?),则 α ~ 1 > α ~ 2 {\tilde{\alpha}}_{1} \gt {\tilde{\alpha}}_{2} α~1?>α~2?

定理1.6
??设 α ~ 1 = ( μ α ~ 1 , ν α ~ 1 ) {\tilde{\alpha}}_{1}=(\mu_{{\tilde{\alpha}}_{1}},\nu_{{\tilde{\alpha}}_{1}}) α~1?=(μα~1??,να~1??) α ~ 2 = ( μ α ~ 2 , ν α ~ 2 ) {\tilde{\alpha}}_{2}=(\mu_{{\tilde{\alpha}}_{2}},\nu_{{\tilde{\alpha}}_{2}}) α~2?=(μα~2??,να~2??)为两个直觉模糊数,则
α ~ 1 ≤ α ~ 2 ? μ α ~ 1 ≤ μ α ~ 2 且 ν α ~ 1 ≥ ν α ~ 2 {\tilde{\alpha}}_{1} \leq {\tilde{\alpha}}_{2} \Leftarrow \mu_{{\tilde{\alpha}}_{1}} \leq \mu_{{\tilde{\alpha}}_{2}}且\nu_{{\tilde{\alpha}}_{1}} \geq \nu_{{\tilde{\alpha}}_{2}} α~1?α~2??μα~1??μα~2??να~1??να~2??
定义1.13
??设 α ~ = ( μ α ~ , ν α ~ ) {\tilde{\alpha}}=(\mu_{{\tilde{\alpha}}},\nu_{{\tilde{\alpha}}}) α~=(μα~?,να~?) α ~ 1 = ( μ α ~ 1 , ν α ~ 1 ) {\tilde{\alpha}}_{1}=(\mu_{{\tilde{\alpha}}_{1}},\nu_{{\tilde{\alpha}}_{1}}) α~1?=(μα~1??,να~1??) α ~ 2 = ( μ α ~ 2 , ν α ~ 2 ) {\tilde{\alpha}}_{2}=(\mu_{{\tilde{\alpha}}_{2}},\nu_{{\tilde{\alpha}}_{2}}) α~2?=(μα~2??,να~2??)为直觉模糊数,则

??(1)? α ~  ̄ = ( ν α ~ , μ α ~ ) \overline{\tilde{\alpha}}=\left(\nu_{\tilde{\alpha}}, \mu_{\tilde{\alpha}}\right) α~=(να~?,μα~?)

??(2)? α ~ 1 ∩ α ~ 2 = ( min ? { μ α ~ 1 , μ α ~ 2 } , max ? { ν α ~ 1 , ν α ~ 2 , } ) \tilde{\alpha}_{1} \cap \tilde{\alpha}_{2} = \left({\min \left\{\mu_{\tilde{\alpha}_{1}}, \mu_{\tilde{\alpha}_{2}}\right\}}, {\max \left\{\nu_{\tilde{\alpha}_{1}}, \nu_{\tilde{\alpha}_{2}},\right\}}\right) α~1?α~2?=(min{μα~1??,μα~2??},max{να~1??,να~2??,})

??(3)? α ~ 1 ∪ α ~ 2 = ( max ? { μ α ~ 1 , μ α ~ 2 } , min ? { ν α ~ 1 , ν α ~ 2 } ) \tilde{\alpha}_{1} \cup \tilde{\alpha}_{2}=\left(\max \left\{\mu_{\tilde{\alpha}_{1}}, \mu_{\tilde{\alpha}_{2}}\right\}, \min \left\{\nu_{\tilde{\alpha}_{1}}, \nu_{\tilde{\alpha}_{2}}\right\}\right) α~1?α~2?=(max{μα~1??,μα~2??},min{να~1??,να~2??})

??(4)? α ~ 1 ⊕ α ~ 2 = ( μ α ~ 1 + μ α ~ 2 ? μ α ~ 1 μ α ~ 2 , ν α ~ 1 ν α ~ 2 ) \color{red}{\tilde{\alpha}_{1} \oplus \tilde{\alpha}_{2}=\left(\mu_{\tilde{\alpha}_{1}}+\mu_{\tilde{\alpha}_{2}}-\mu_{\tilde{\alpha}_{1}} \mu_{\tilde{\alpha}_{2}}, \nu_{\tilde{\alpha}_{1}} \nu_{\tilde{\alpha}_{2}}\right)} α~1?α~2?=(μα~1??+μα~2???μα~1??μα~2??,να~1??να~2??)

??(5)? α ~ 1 ? α ~ 2 = ( μ α ~ 1 μ α ~ 2 , ν α ~ 1 + ν α ~ 2 ? ν α ~ 1 ν α ~ 2 ) \color{red}{\tilde{\alpha}_{1} \otimes \tilde{\alpha}_{2}=\left(\mu_{\tilde{\alpha}_{1}} \mu_{\tilde{\alpha}_{2}}, \nu_{\tilde{\alpha}_{1}}+\nu_{\tilde{\alpha}_{2}}-\nu_{\tilde{\alpha}_{1}} \nu_{\tilde{\alpha}_{2}}\right)} α~1??α~2?=(μα~1??μα~2??,να~1??+να~2???να~1??να~2??)

??(6)? λ α ~ = ( 1 ? ( 1 ? μ α ~ ) ) λ , v α ~ λ ) , λ ≥ 0 \color{red}{\left.\lambda \tilde{\alpha}=\left(1-\left(1-\mu_{\tilde{\alpha}}\right)\right)^{\lambda}, v_{\tilde{\alpha}}^{\lambda}\right), \lambda \geq 0} λα~=(1?(1?μα~?))λ,vα~λ?),λ0

??(7)? α ~ λ = ( μ α ~ λ , 1 ? ( 1 ? ν α ~ ) λ ) , λ ≥ 0 \color{red}{\tilde{\alpha}^{\lambda}=\left(\mu_{\tilde{\alpha}}^{\lambda}, 1-\left(1-\nu_{\tilde{\alpha}}\right)^{\lambda}\right), \lambda \geq 0} α~λ=(μα~λ?,1?(1?να~?)λ),λ0

??根据直觉模糊数的定义,可以证明以下两个定理。

定理1.7
??设 α ~ = ( μ α ~ , ν α ~ ) {\tilde{\alpha}}=(\mu_{{\tilde{\alpha}}},\nu_{{\tilde{\alpha}}}) α~=(μα~?,να~?) α ~ 1 = ( μ α ~ 1 , ν α ~ 1 ) {\tilde{\alpha}}_{1}=(\mu_{{\tilde{\alpha}}_{1}},\nu_{{\tilde{\alpha}}_{1}}) α~1?=(μα~1??,να~1??) α ~ 2 = ( μ α ~ 2 , ν α ~ 2 ) {\tilde{\alpha}}_{2}=(\mu_{{\tilde{\alpha}}_{2}},\nu_{{\tilde{\alpha}}_{2}}) α~2?=(μα~2??,να~2??)为直觉模糊数,则 α ~ 1 ⊕ α ~ 2 \tilde{\alpha}_{1} \oplus \tilde{\alpha}_{2} α~1?α~2? α ~ 1 ? α ~ 2 \tilde{\alpha}_{1} \otimes \tilde{\alpha}_{2} α~1??α~2? λ α ~ \lambda \tilde{\alpha} λα~ α ~ λ ( λ > 0 ) \tilde{\alpha}^{\lambda}(\lambda>0) α~λ(λ>0)均为直觉模糊数。

定理1.8
??设 α ~ = ( μ α ~ , ν α ~ ) {\tilde{\alpha}}=(\mu_{{\tilde{\alpha}}},\nu_{{\tilde{\alpha}}}) α~=(μα~?,να~?) α ~ 1 = ( μ α ~ 1 , ν α ~ 1 ) {\tilde{\alpha}}_{1}=(\mu_{{\tilde{\alpha}}_{1}},\nu_{{\tilde{\alpha}}_{1}}) α~1?=(μα~1??,να~1??) α ~ 2 = ( μ α ~ 2 , ν α ~ 2 ) {\tilde{\alpha}}_{2}=(\mu_{{\tilde{\alpha}}_{2}},\nu_{{\tilde{\alpha}}_{2}}) α~2?=(μα~2??,να~2??)为直觉模糊数, λ , λ 1 , λ 2 > 0 \lambda, \lambda_{1}, \lambda_{2}>0 λ,λ1?,λ2?>0,则

??(1)? α ~ 1 ⊕ α ~ 2 = α ~ 2 ⊕ α ~ 1 \tilde{\alpha}_{1} \oplus \tilde{\alpha}_{2}=\tilde{\alpha}_{2} \oplus \tilde{\alpha}_{1} α~1?α~2?=α~2?α~1?

??(2)? α ~ 1 ? α ~ 2 = α ~ 2 ? α ~ 1 \tilde{\alpha}_{1} \otimes \tilde{\alpha}_{2}=\tilde{\alpha}_{2} \otimes \tilde{\alpha}_{1} α~1??α~2?=α~2??α~1?

??(3)? λ ( α ~ 1 ⊕ α ~ 2 ) = λ α ~ 1 + λ α ~ 2 \lambda\left(\tilde{\alpha}_{1} \oplus \tilde{\alpha}_{2}\right)=\lambda \tilde{\alpha}_{1}+\lambda \tilde{\alpha}_{2} λ(α~1?α~2?)=λα~1?+λα~2?

??(4)? ( α ~ 1 ? α ~ 2 ) λ = α ~ 1 λ ? α ~ 2 λ \left(\tilde{\alpha}_{1} \otimes \tilde{\alpha}_{2}\right)^{\lambda}=\tilde{\alpha}_{1}^{\lambda} \otimes \tilde{\alpha}_{2}^{\lambda} (α~1??α~2?)λ=α~1λ??α~2λ?

??(5)? λ 1 α ~ ⊕ λ 2 α ~ = ( λ 1 + λ 2 ) α ~ \lambda_{1} \tilde{\alpha} \oplus \lambda_{2} \tilde{\alpha}=\left(\lambda_{1}+\lambda_{2}\right) \tilde{\alpha} λ1?α~λ2?α~=(λ1?+λ2?)α~

??(6)? α ~ λ 1 ? α ~ λ 2 = α ~ ( λ 1 + λ 2 ) \tilde{\alpha}^{\lambda_{1}} \otimes \tilde{\alpha}^{\lambda_{2}}=\tilde{\alpha}^{\left(\lambda_{1}+\lambda_{2}\right)} α~λ1??α~λ2?=α~(λ1?+λ2?)

  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2022-02-26 11:55:08  更:2022-02-26 11:58:00 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 16:57:03-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码