索引
定义
索引(index)是帮助MySQL高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护者满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据, 这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。
左边是数据表,一共有两列七条记录,最左边的是数据记录的物理地址(注意逻辑上相邻的记录在磁盘上也并不是一定物理相邻的)。为了加快Col2的查找,可以维护一个右边所示的二叉查找树,每个节点分别包含索引键值和一个指向对应数据记录物理地址的指针,这样就可以运用二叉查找快速获取到相应数据。
一般来说索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储在磁盘上。索引是数据库中用来提高性能的最常用的工具。
为数据库的某个字段创建索引,相当于是为这个字段的内容创建了一个目录,通过这个目录可以快速实现数据的定位,也就是通过索引能够快速找到某条数据所在磁盘的位置
索引优势劣势
优势
1) 类似于书籍的目录索引,提高数据检索的效率,降低数据库的IO成本。
2) 通过索引列对数据进行排序,降低数据排序的成本,降低CPU的消耗。
劣势
1) 实际上索引也是一张表,该表中保存了主键与索引字段,并指向实体类的记录,所以索引列也是要占用空间的。
2) 虽然索引大大提高了查询效率,同时却也降低更新表的速度,如对表进行INSERT、UPDATE、DELETE。因为更新表时,MySQL 不仅要保存数据,还要保存一下索引文件每次更新添加了索引列的字段,都会调整因为更新所带来的键值变化后的索引信息。
索引存放位置
- InnoDB存储引擎的表:将索引和数据放在同一个文件里面: *.idb
- MyISAM存储引擎的表: 索引和数据分开两个文件夹来存储:
索引结构
索引是在MySQL的存储引擎层中实现的,而不是在服务器层实现的。所以每种存储引擎的索引都不一定完全相同,也不是所有的存储引擎都支持所有的索引类型的。MySQL目前提供了以下4种索引:
- BTREE 索引 : 最常见的索引类型,大部分索引都支持 B 树索引。
- HASH 索引:只有Memory引擎支持 , 使用场景简单 。
- R-tree 索引(空间索引):空间索引是MyISAM引擎的一个特殊索引类型,主要用于地理空间数据类型,通常使用较少,不做特别介绍。
- Full-text (全文索引) :全文索引也是MyISAM的一个特殊索引类型,主要用于全文索引,InnoDB从Mysql5.6版本开始支持全文索引。
MyISAM、InnoDB、Memory三种存储引擎对各种索引类型的支持
索引 | InnoDB引擎 | MyISAM引擎 | Memory引擎 |
---|
BTREE索引 | 支持 | 支持 | 支持 | HASH 索引 | 不支持 | 不支持 | 支持 | R-tree 索引 | 不支持 | 支持 | 不支持 | Full-text | 5.6版本之后支持 | 支持 | 不支持 |
我们平常所说的索引,如果没有特别指明,都是指B+树(多路搜索树,并不一定是二叉的)结构组织的索引。其中聚集索引、复合索引、前缀索引、唯一索引默认都是使用 B+tree 索引,统称为 索引
BTREE 结构
Tree又叫多路平衡搜索树,一颗m叉的BTree特性如下:
- 树中每个节点最多包含m个孩子。
- 除根节点与叶子节点外,每个节点至少有[ceil(m/2)]个孩子。
- 若根节点不是叶子节点,则至少有两个孩子。
- 所有的叶子节点都在同一层。
- 每个非叶子节点由n个key与n+1个指针组成,其中[ceil(m/2)-1] <= n <= m-1
以5叉BTree为例,key的数量:公式推导[ceil(m/2)-1] <= n <= m-1。所以 2 <= n <=4 。当n>4时,中间节点分裂到父节点,两边节点分裂。
插入 C N G A H E K Q M F W L T Z D P R X Y S 数据为例。
演变过程如下:
插入前4个字母 C N G A
插入H,n>4,中间元素G字母向上分裂到新的节点
插入E,K,Q不需要分裂
插入M,中间元素M字母向上分裂到父节点G
插入F,W,L,T不需要分裂
插入Z,中间元素T向上分裂到父节点中
插入D,中间元素D向上分裂到父节点中。然后插入P,R,X,Y不需要分裂
最后插入S,NPQR节点n>5,中间节点Q向上分裂,但分裂后父节点DGMT的n>5,中间节点M向上分裂
到此,该BTREE树就已经构建完成了, BTREE树 和 二叉树 相比, 查询数据的效率更高, 因为对于相同的数据量来说,BTREE的层级结构比二叉树小,因此搜索速度快。
B+TREE 结构
B+Tree为BTree的变种,B+Tree与BTree的区别为:
1). n叉B+Tree最多含有n个key,而BTree最多含有n-1个key。
2). B+Tree的叶子节点保存所有的key信息,依key大小顺序排列。
3). 所有的非叶子节点都可以看作是key的索引部分。
由于B+Tree只有叶子节点保存key信息,查询任何key都要从root走到叶子。所以B+Tree的查询效率更加稳定。
MySQL中的B+Tree
MySql索引数据结构对经典的B+Tree进行了优化。在原B+Tree的基础上,增加一个指向相邻叶子节点的链表指针,就形成了带有顺序指针的B+Tree,提高区间访问的性能(有利于查找范围值)。
为什么InnoDB存储引擎选择使用B+tree索引结构?
- 相对于二叉树,层级更少,搜索效率高;
- 对于B-tree,无论是叶子节点还是非叶子节点,都会保存数据,这样导致一页中存储的键值减少,指针跟着减少,要同样保存大量数据,只能增加树的高度,导致性能降低;
- 相对Hash索引,B+tree支持范围匹配及排序操作;
索引分类
主键索引 :主键自带的索引效果
普通索引 :为普通列创建的索引,一个表可以有多个普通索引
唯一索引 :索引列的值必须唯一,但允许有空值,性能比普通索引好
复合索引 :即一个索引包含多个列,一次性为表中的多个字段一起创建索引,(建议不要超过5个列)
全文索引 : 进行查询的时候,数据源可能来自于不同的字段或者不同的表,MyISAM支持全文索引,在实际中,会使用ElasticSearch
聚集索引&二级索引
在InnoDB存储引擎中,根据索引的存储形式,又可以分为以下两种:
分类 | 含义 | 特点 |
---|
聚集索引(ClusteredIndex) | 将数据存储与索引放到了一块,索引结构的叶子节点保存了行数据 | 必须有,而且只有一个 | 二级索引(SecondaryIndex) | 将数据与索引分开存储,索引结构的叶子节点关联的是对应的主键 | 可以存在多个 |
聚集索引选取规则
- 如果存在主键,主键索引就是聚集索引。
- 如果不存在主键,将使用第一个唯一(UNIQUE)索引作为聚集索引。
- 如果表没有主键,或没有合适的唯一索引,则InnoDB会自动生成一个rowid作为隐藏的聚集索引
①. 由于是根据name字段进行查询,所以先根据name='Arm’到name字段的二级索引中进行匹配查找。但是在二级索引中只能查找到 Arm 对应的主键值 10。 ②. 由于查询返回的数据是*,所以此时,还需要根据主键值10,到聚集索引中查找10对应的记录,最终找到10对应的行row。 ③. 最终拿到这一行的数据,直接返回即可。
回表查询: 这种先到二级索引中查找数据,找到主键值,然后再到聚集索引中根据主键值,获取数据的方式,就称之为回表查询。
思考题
以下两条SQL语句,那个执行效率高? 为什么? A. select * from user where id = 10 ; B. select * from user where name = ‘Arm’ ; 备注: id为主键,name字段创建的有索引;
A 语句的执行性能要高于B 语句。 因为A语句直接走聚集索引,直接返回数据。 而B语句需要先查询name字段的二级索引,然后再查询聚集索引,也就是需要进行回表查询。
InnoDB主键索引的B+tree高度为多高呢?
假设: 一行数据大小为1k,一页中可以存储16行这样的数据。InnoDB的指针占用6个字节的空间,主键即使为bigint,占用字节数为8。
高度为2:
n * 8 + (n + 1) * 6 = 16*1024 , 算出n约为 1170
1171* 16 = 18736
也就是说,如果树的高度为2,则可以存储 18000 多条记录。 高度为3:
1171 * 1171 * 16 = 21939856
也就是说,如果树的高度为3,则可以存储 2200w 左右的记录。
索引语法
CREATE TABLE `city` (
`city_id` int(11) NOT NULL AUTO_INCREMENT,
`city_name` varchar(50) NOT NULL,
`country_id` int(11) NOT NULL,
PRIMARY KEY (`city_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
CREATE TABLE `country` (
`country_id` int(11) NOT NULL AUTO_INCREMENT,
`country_name` varchar(100) NOT NULL,
PRIMARY KEY (`country_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
insert into `city` (`city_id`, `city_name`, `country_id`) values(1,'西安',1);
insert into `city` (`city_id`, `city_name`, `country_id`) values(2,'NewYork',2);
insert into `city` (`city_id`, `city_name`, `country_id`) values(3,'北京',1);
insert into `city` (`city_id`, `city_name`, `country_id`) values(4,'上海',1);
insert into `country` (`country_id`, `country_name`) values(1,'China');
insert into `country` (`country_id`, `country_name`) values(2,'America');
insert into `country` (`country_id`, `country_name`) values(3,'Japan');
insert into `country` (`country_id`, `country_name`) values(4,'UK');
创建索引
语法 :
create index 索引名称 on 表名(列名);
create UNIQUE index 索引名称 on 表名(列名);
create index 索引名称 on 表名(列1,列2,列3);
示例 : 为city表中的city_name字段创建索引 ;
create index idx_city_name on city(city_name);
create UNIQUE index idx_city_name on city(city_name)
create index idx_city_name on city(city_name,country_id);
查看索引
语法:
show index from table_name;
示例:查看city表中的索引信息;
show INDEX from city
删除索引
语法 :
DROP INDEX index_name ON tbl_name;
示例 : 想要删除city表上的索引idx_city_name,可以操作如下:
drop index idx_city_name on city
ALTER命令
1). alter table tb_name add primary key(column_list);
该语句添加一个主键,这意味着索引值必须是唯一的,且不能为NULL
2). alter table tb_name add unique index_name(column_list);
这条语句创建索引的值必须是唯一的(除了NULL外,NULL可能会出现多次)
3). alter table tb_name add index index_name(column_list);
添加普通索引, 索引值可以出现多次。
4). alter table tb_name add fulltext index_name(column_list);
该语句指定了索引为FULLTEXT, 用于全文索引
索引设计原则
? 索引的设计可以遵循一些已有的原则,创建索引的时候请尽量考虑符合这些原则,便于提升索引的使用效率,更高效的使用索引。
-
对查询频次较高,且数据量比较大的表建立索引。 -
索引字段的选择,最佳候选列应当从where子句的条件中提取,如果where子句中的组合比较多,那么应当挑选最常用、过滤效果最好的列的组合。 -
使用唯一索引,区分度越高,使用索引的效率越高。 -
索引可以有效的提升查询数据的效率,但索引数量不是多多益善,索引越多,维护索引的代价自然也就水涨船高。对于插入、更新、删除等DML操作比较频繁的表来说,索引过多,会引入相当高的维护代价,降低DML操作的效率,增加相应操作的时间消耗。另外索引过多的话,MySQL也会犯选择困难病,虽然最终仍然会找到一个可用的索引,但无疑提高了选择的代价。 -
使用短索引,索引创建之后也是使用硬盘来存储的,因此提升索引访问的I/O效率,也可以提升总体的访问效率。假如构成索引的字段总长度比较短,那么在给定大小的存储块内可以存储更多的索引值,相应的可以有效的提升MySQL访问索引的I/O效率。 -
利用最左前缀,N个列组合而成的组合索引,那么相当于是创建了N个索引,如果查询时where子句中使用了组成该索引的前几个字段,那么这条查询SQL可以利用组合索引来提升查询效率。 创建复合索引:
CREATE INDEX idx_name_email_status ON tb_seller(NAME,email,STATUS);
就相当于
对name 创建索引 ;
对name , email 创建了索引 ;
对name , email, status 创建了索引 ;
SQL性能分析
SQL执行频率
MySQL 客户端连接成功后,通过 show [session|global] status 命令可以提供服务器状态信息。通过如下指令,可以查看当前数据库的INSERT、UPDATE、DELETE、SELECT的访问频次:
SHOW GLOBAL STATUS LIKE 'Com_______';
- Com_delete: 删除次数
- Com_insert: 插入次数
- Com_select: 查询次数
- Com_update: 更新次数
通过上述指令,我们可以查看到当前数据库到底是以查询为主,还是以增删改为主,从而为数据库优化提供参考依据。 如果是以增删改为主,我们可以考虑不对其进行索引的优化。 如果是以查询为主,那么就要考虑对数据库的索引进行优化了。
慢查询日志
慢查询日志记录了所有执行时间超过指定参数(long_query_time,单位:秒,默认10秒)的所有SQL语句的日志。 MySQL的慢查询日志默认没有开启,我们可以查看一下系统变量 slow_query_log。 如果要开启慢查询日志,需要在MySQL的配置文件(/etc/my.cnf)中配置如下信息:
slow_query_log=1
long_query_time=2
配置完毕之后,通过以下指令重新启动MySQL服务器进行测试,查看慢日志文件中记录的信息 /var/lib/mysql/localhost-slow.log。
systemctl restart mysqld
然后,再次查看开关情况,慢查询日志就已经打开了。
profile详情
show profiles 能够在做SQL优化时帮助我们了解时间都耗费到哪里去了。通过have_profiling参数,能够看到当前MySQL是否支持profile操作:
SELECT @@have_profiling ;
可以看到,当前MySQL是支持 profile操作的,但是开关是关闭的。可以通过set语句在session/global级别开启profiling:
SET profiling = 1;
开关已经打开了,接下来,我们所执行的SQL语句,都会被MySQL记录,并记录执行时间消耗到哪儿去 了。 我们直接执行如下的SQL语句:
select * from tb_user;
select * from tb_user where id = 1;
select * from tb_user where name = '白起';
select count(*) from tb_sku;
执行一系列的业务SQL的操作,然后通过如下指令查看指令的执行耗时:
show profiles;
show profile for query query_id;
show profile cpu for query query_id;
查看每一条SQL的耗时情况:
查看指定SQL各个阶段的耗时情况 :
explain
EXPLAIN 或者 DESC命令获取 MySQL 如何执行 SELECT 语句的信息,包括在 SELECT 语句执行 过程中表如何连接和连接的顺序。
EXPLAIN SELECT 字段列表 FROM 表名 WHERE 条件 ;
Explain 执行计划中各个字段的含义:
|