PCL Recognition模块:基于对应分组的三维物体识别
一、初识Recognition点云识别模块
??本章节旨在解释如何基于pcl_recognition模块执行3D对象识别。pcl_segmentation库包含了将点云分割成不同簇的算法。这些算法最适合处理由许多在空间上相互隔离的区域内的点云。在这种情况下,通常使用集群将点云分解为其组成部分,然后可以独立处理这些部分。有关该模块包含的所有类和方法的解释可以参考【PCL官网:点云识别模块介绍】。 ??本章节解释了如何使用对应分组算法(Correspondence Grouping algorithms),以便将3D描述符匹配阶段后获得的点对点通信集聚到当前场景中出现的模型实例中。对于每个簇,代表场景中一个可能的模型实例,对应分组算法还输出识别该模型在当前场景中6DOF姿态估计的变换矩阵。
二、基于对应分组算法识别的实例代码及分析
??在开始学习之前,可以从GitHub下载本章中使用的PCD数据集(milk.pcd和 milk_cartoon_all_small_clorox.pcd),并将文件放在已经创建好的测试文件夹中。 ??另外,将以下代码复制并粘贴到编辑器中,并将其保存为ence_group .cpp(或者在这里下载源文件)。 ??以下代码中的中文注释请仔细查看以便于理解整个程序内容。
#include <pcl/io/pcd_io.h>
#include <pcl/point_cloud.h>
#include <pcl/correspondence.h>
#include <pcl/features/normal_3d_omp.h>
#include <pcl/features/shot_omp.h>
#include <pcl/features/board.h>
#include <pcl/filters/uniform_sampling.h>
#include <pcl/recognition/cg/hough_3d.h>
#include <pcl/recognition/cg/geometric_consistency.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/kdtree/impl/kdtree_flann.hpp>
#include <pcl/common/transforms.h>
#include <pcl/console/parse.h>
typedef pcl::PointXYZRGBA PointType;
typedef pcl::Normal NormalType;
typedef pcl::ReferenceFrame RFType;
typedef pcl::SHOT352 DescriptorType;
std::string model_filename_;
std::string scene_filename_;
bool show_keypoints_ (false);
bool show_correspondences_ (false);
bool use_cloud_resolution_ (false);
bool use_hough_ (true);
float model_ss_ (0.01f);
float scene_ss_ (0.03f);
float rf_rad_ (0.015f);
float descr_rad_ (0.02f);
float cg_size_ (0.01f);
float cg_thresh_ (5.0f);
void
showHelp (char *filename)
{
std::cout << std::endl;
std::cout << "***************************************************************************" << std::endl;
std::cout << "* *" << std::endl;
std::cout << "* Correspondence Grouping Tutorial - Usage Guide *" << std::endl;
std::cout << "* *" << std::endl;
std::cout << "***************************************************************************" << std::endl << std::endl;
std::cout << "Usage: " << filename << " model_filename.pcd scene_filename.pcd [Options]" << std::endl << std::endl;
std::cout << "Options:" << std::endl;
std::cout << " -h: Show this help." << std::endl;
std::cout << " -k: Show used keypoints." << std::endl;
std::cout << " -c: Show used correspondences." << std::endl;
std::cout << " -r: Compute the model cloud resolution and multiply" << std::endl;
std::cout << " each radius given by that value." << std::endl;
std::cout << " --algorithm (Hough|GC): Clustering algorithm used (default Hough)." << std::endl;
std::cout << " --model_ss val: Model uniform sampling radius (default 0.01)" << std::endl;
std::cout << " --scene_ss val: Scene uniform sampling radius (default 0.03)" << std::endl;
std::cout << " --rf_rad val: Reference frame radius (default 0.015)" << std::endl;
std::cout << " --descr_rad val: Descriptor radius (default 0.02)" << std::endl;
std::cout << " --cg_size val: Cluster size (default 0.01)" << std::endl;
std::cout << " --cg_thresh val: Clustering threshold (default 5)" << std::endl << std::endl;
}
void
parseCommandLine (int argc, char *argv[])
{
if (pcl::console::find_switch (argc, argv, "-h"))
{
showHelp (argv[0]);
exit (0);
}
std::vector<int> filenames;
filenames = pcl::console::parse_file_extension_argument (argc, argv, ".pcd");
if (filenames.size () != 2)
{
std::cout << "Filenames missing.\n";
showHelp (argv[0]);
exit (-1);
}
model_filename_ = argv[filenames[0]];
scene_filename_ = argv[filenames[1]];
if (pcl::console::find_switch (argc, argv, "-k"))
{
show_keypoints_ = true;
}
if (pcl::console::find_switch (argc, argv, "-c"))
{
show_correspondences_ = true;
}
if (pcl::console::find_switch (argc, argv, "-r"))
{
use_cloud_resolution_ = true;
}
std::string used_algorithm;
if (pcl::console::parse_argument (argc, argv, "--algorithm", used_algorithm) != -1)
{
if (used_algorithm.compare ("Hough") == 0)
{
use_hough_ = true;
}
else if (used_algorithm.compare ("GC") == 0)
{
use_hough_ = false;
}
else
{
std::cout << "Wrong algorithm name.\n";
showHelp (argv[0]);
exit (-1);
}
}
pcl::console::parse_argument (argc, argv, "--model_ss", model_ss_);
pcl::console::parse_argument (argc, argv, "--scene_ss", scene_ss_);
pcl::console::parse_argument (argc, argv, "--rf_rad", rf_rad_);
pcl::console::parse_argument (argc, argv, "--descr_rad", descr_rad_);
pcl::console::parse_argument (argc, argv, "--cg_size", cg_size_);
pcl::console::parse_argument (argc, argv, "--cg_thresh", cg_thresh_);
}
double
computeCloudResolution (const pcl::PointCloud<PointType>::ConstPtr &cloud)
{
double res = 0.0;
int n_points = 0;
int nres;
std::vector<int> indices (2);
std::vector<float> sqr_distances (2);
pcl::search::KdTree<PointType> tree;
tree.setInputCloud (cloud);
for (std::size_t i = 0; i < cloud->size (); ++i)
{
if (! std::isfinite ((*cloud)[i].x))
{
continue;
}
nres = tree.nearestKSearch (i, 2, indices, sqr_distances);
if (nres == 2)
{
res += sqrt (sqr_distances[1]);
++n_points;
}
}
if (n_points != 0)
{
res /= n_points;
}
return res;
}
int
main (int argc, char *argv[])
{
parseCommandLine (argc, argv);
pcl::PointCloud<PointType>::Ptr model (new pcl::PointCloud<PointType> ());
pcl::PointCloud<PointType>::Ptr model_keypoints (new pcl::PointCloud<PointType> ());
pcl::PointCloud<PointType>::Ptr scene (new pcl::PointCloud<PointType> ());
pcl::PointCloud<PointType>::Ptr scene_keypoints (new pcl::PointCloud<PointType> ());
pcl::PointCloud<NormalType>::Ptr model_normals (new pcl::PointCloud<NormalType> ());
pcl::PointCloud<NormalType>::Ptr scene_normals (new pcl::PointCloud<NormalType> ());
pcl::PointCloud<DescriptorType>::Ptr model_descriptors (new pcl::PointCloud<DescriptorType> ());
pcl::PointCloud<DescriptorType>::Ptr scene_descriptors (new pcl::PointCloud<DescriptorType> ());
if (pcl::io::loadPCDFile (model_filename_, *model) < 0)
{
std::cout << "Error loading model cloud." << std::endl;
showHelp (argv[0]);
return (-1);
}
if (pcl::io::loadPCDFile (scene_filename_, *scene) < 0)
{
std::cout << "Error loading scene cloud." << std::endl;
showHelp (argv[0]);
return (-1);
}
if (use_cloud_resolution_)
{
float resolution = static_cast<float> (computeCloudResolution (model));
if (resolution != 0.0f)
{
model_ss_ *= resolution;
scene_ss_ *= resolution;
rf_rad_ *= resolution;
descr_rad_ *= resolution;
cg_size_ *= resolution;
}
std::cout << "Model resolution: " << resolution << std::endl;
std::cout << "Model sampling size: " << model_ss_ << std::endl;
std::cout << "Scene sampling size: " << scene_ss_ << std::endl;
std::cout << "LRF support radius: " << rf_rad_ << std::endl;
std::cout << "SHOT descriptor radius: " << descr_rad_ << std::endl;
std::cout << "Clustering bin size: " << cg_size_ << std::endl << std::endl;
}
pcl::NormalEstimationOMP<PointType, NormalType> norm_est;
norm_est.setKSearch (10);
norm_est.setInputCloud (model);
norm_est.compute (*model_normals);
norm_est.setInputCloud (scene);
norm_est.compute (*scene_normals);
pcl::UniformSampling<PointType> uniform_sampling;
uniform_sampling.setInputCloud (model);
uniform_sampling.setRadiusSearch (model_ss_);
uniform_sampling.filter (*model_keypoints);
std::cout << "Model total points: " << model->size () << "; Selected Keypoints: " << model_keypoints->size () << std::endl;
uniform_sampling.setInputCloud (scene);
uniform_sampling.setRadiusSearch (scene_ss_);
uniform_sampling.filter (*scene_keypoints);
std::cout << "Scene total points: " << scene->size () << "; Selected Keypoints: " << scene_keypoints->size () << std::endl;
pcl::SHOTEstimationOMP<PointType, NormalType, DescriptorType> descr_est;
descr_est.setRadiusSearch (descr_rad_);
descr_est.setInputCloud (model_keypoints);
descr_est.setInputNormals (model_normals);
descr_est.setSearchSurface (model);
descr_est.compute (*model_descriptors);
descr_est.setInputCloud (scene_keypoints);
descr_est.setInputNormals (scene_normals);
descr_est.setSearchSurface (scene);
descr_est.compute (*scene_descriptors);
pcl::CorrespondencesPtr model_scene_corrs (new pcl::Correspondences ());
pcl::KdTreeFLANN<DescriptorType> match_search;
match_search.setInputCloud (model_descriptors);
for (std::size_t i = 0; i < scene_descriptors->size (); ++i)
{
std::vector<int> neigh_indices (1);
std::vector<float> neigh_sqr_dists (1);
if (!std::isfinite (scene_descriptors->at (i).descriptor[0]))
{
continue;
}
int found_neighs = match_search.nearestKSearch (scene_descriptors->at (i), 1, neigh_indices, neigh_sqr_dists);
if(found_neighs == 1 && neigh_sqr_dists[0] < 0.25f)
{
pcl::Correspondence corr (neigh_indices[0], static_cast<int> (i), neigh_sqr_dists[0]);
model_scene_corrs->push_back (corr);
}
}
std::cout << "Correspondences found: " << model_scene_corrs->size () << std::endl;
std::vector<Eigen::Matrix4f, Eigen::aligned_allocator<Eigen::Matrix4f> > rototranslations;
std::vector<pcl::Correspondences> clustered_corrs;
if (use_hough_)
{
pcl::PointCloud<RFType>::Ptr model_rf (new pcl::PointCloud<RFType> ());
pcl::PointCloud<RFType>::Ptr scene_rf (new pcl::PointCloud<RFType> ());
pcl::BOARDLocalReferenceFrameEstimation<PointType, NormalType, RFType> rf_est;
rf_est.setFindHoles (true);
rf_est.setRadiusSearch (rf_rad_);
rf_est.setInputCloud (model_keypoints);
rf_est.setInputNormals (model_normals);
rf_est.setSearchSurface (model);
rf_est.compute (*model_rf);
rf_est.setInputCloud (scene_keypoints);
rf_est.setInputNormals (scene_normals);
rf_est.setSearchSurface (scene);
rf_est.compute (*scene_rf);
pcl::Hough3DGrouping<PointType, PointType, RFType, RFType> clusterer;
clusterer.setHoughBinSize (cg_size_);
clusterer.setHoughThreshold (cg_thresh_);
clusterer.setUseInterpolation (true);
clusterer.setUseDistanceWeight (false);
clusterer.setInputCloud (model_keypoints);
clusterer.setInputRf (model_rf);
clusterer.setSceneCloud (scene_keypoints);
clusterer.setSceneRf (scene_rf);
clusterer.setModelSceneCorrespondences (model_scene_corrs);
clusterer.recognize (rototranslations, clustered_corrs);
}
else
{
pcl::GeometricConsistencyGrouping<PointType, PointType> gc_clusterer;
gc_clusterer.setGCSize (cg_size_);
gc_clusterer.setGCThreshold (cg_thresh_);
gc_clusterer.setInputCloud (model_keypoints);
gc_clusterer.setSceneCloud (scene_keypoints);
gc_clusterer.setModelSceneCorrespondences (model_scene_corrs);
gc_clusterer.recognize (rototranslations, clustered_corrs);
}
std::cout << "Model instances found: " << rototranslations.size () << std::endl;
for (std::size_t i = 0; i < rototranslations.size (); ++i)
{
std::cout << "\n Instance " << i + 1 << ":" << std::endl;
std::cout << " Correspondences belonging to this instance: " << clustered_corrs[i].size () << std::endl;
Eigen::Matrix3f rotation = rototranslations[i].block<3,3>(0, 0);
Eigen::Vector3f translation = rototranslations[i].block<3,1>(0, 3);
printf ("\n");
printf (" | %6.3f %6.3f %6.3f | \n", rotation (0,0), rotation (0,1), rotation (0,2));
printf (" R = | %6.3f %6.3f %6.3f | \n", rotation (1,0), rotation (1,1), rotation (1,2));
printf (" | %6.3f %6.3f %6.3f | \n", rotation (2,0), rotation (2,1), rotation (2,2));
printf ("\n");
printf (" t = < %0.3f, %0.3f, %0.3f >\n", translation (0), translation (1), translation (2));
}
pcl::visualization::PCLVisualizer viewer ("Correspondence Grouping");
viewer.addPointCloud (scene, "scene_cloud");
pcl::PointCloud<PointType>::Ptr off_scene_model (new pcl::PointCloud<PointType> ());
pcl::PointCloud<PointType>::Ptr off_scene_model_keypoints (new pcl::PointCloud<PointType> ());
if (show_correspondences_ || show_keypoints_)
{
pcl::transformPointCloud (*model, *off_scene_model, Eigen::Vector3f (-1,0,0), Eigen::Quaternionf (1, 0, 0, 0));
pcl::transformPointCloud (*model_keypoints, *off_scene_model_keypoints, Eigen::Vector3f (-1,0,0), Eigen::Quaternionf (1, 0, 0, 0));
pcl::visualization::PointCloudColorHandlerCustom<PointType> off_scene_model_color_handler (off_scene_model, 255, 255, 128);
viewer.addPointCloud (off_scene_model, off_scene_model_color_handler, "off_scene_model");
}
if (show_keypoints_)
{
pcl::visualization::PointCloudColorHandlerCustom<PointType> scene_keypoints_color_handler (scene_keypoints, 0, 0, 255);
viewer.addPointCloud (scene_keypoints, scene_keypoints_color_handler, "scene_keypoints");
viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 5, "scene_keypoints");
pcl::visualization::PointCloudColorHandlerCustom<PointType> off_scene_model_keypoints_color_handler (off_scene_model_keypoints, 0, 0, 255);
viewer.addPointCloud (off_scene_model_keypoints, off_scene_model_keypoints_color_handler, "off_scene_model_keypoints");
viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 5, "off_scene_model_keypoints");
}
for (std::size_t i = 0; i < rototranslations.size (); ++i)
{
pcl::PointCloud<PointType>::Ptr rotated_model (new pcl::PointCloud<PointType> ());
pcl::transformPointCloud (*model, *rotated_model, rototranslations[i]);
std::stringstream ss_cloud;
ss_cloud << "instance" << i;
pcl::visualization::PointCloudColorHandlerCustom<PointType> rotated_model_color_handler (rotated_model, 255, 0, 0);
viewer.addPointCloud (rotated_model, rotated_model_color_handler, ss_cloud.str ());
if (show_correspondences_)
{
for (std::size_t j = 0; j < clustered_corrs[i].size (); ++j)
{
std::stringstream ss_line;
ss_line << "correspondence_line" << i << "_" << j;
PointType& model_point = off_scene_model_keypoints->at (clustered_corrs[i][j].index_query);
PointType& scene_point = scene_keypoints->at (clustered_corrs[i][j].index_match);
viewer.addLine<PointType, PointType> (model_point, scene_point, 0, 255, 0, ss_line.str ());
}
}
}
while (!viewer.wasStopped ())
{
viewer.spinOnce ();
}
return (0);
}
注意:在调用聚类算法之前,不需要显式计算LRFs。如果取到聚类算法的云没有关联一组lrf, Hough3DGrouping在进行聚类之前会自动计算出它们。特别是,在不设置LRF的情况下调用recognition(或cluster)方法时会发生这种情况:在这种情况下,需要将LRF的半径指定为集群算法的附加参数(使用setLocalRfSearchRadius方法)。
??程序运行结果:??
??使用 -k 的效果,蓝色点为计算出的关键点:
??使用-c的结果,绿色的线是聚类后对应关键点的连线。
??同时使用 -k 和 -c 的结果:
【博主简介】 ??斯坦福的兔子,男,天津大学机械工程工学硕士。毕业至今从事光学三维成像及点云处理相关工作。因工作中使用的三维处理库为公司内部库,不具有普遍适用性,遂自学开源PCL库及其相关数学知识以备使用。谨此将自学过程与君共享。 博主才疏学浅,尚不具有指导能力,如有问题还请各位在评论处留言供大家共同讨论。 若前辈们有工作机会介绍欢迎私信。
|