IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> 【牛客网】KY8 整数拆分 -> 正文阅读

[数据结构与算法]【牛客网】KY8 整数拆分

在这里插入图片描述
思路一:记f(n)为n的划分数,我们有递推公式:

f(2m + 1) = f(2m),
f(2m) = f(2m - 1) + f(m),
初始条件:f(1) = 1。

证明:
证明的要点是考虑划分中是否有1。

记:
A(n) = n的所有划分组成的集合,
B(n) = n的所有含有1的划分组成的集合,
C(n) = n的所有不含1的划分组成的集合,
则有: A(n) = B(n)∪C(n)。

又记:
f(n) = A(n)中元素的个数,
g(n) = B(n)中元素的个数,
h(n) = C(n)中元素的个数,
易知: f(n) = g(n) + h(n)。

以上记号的具体例子见文末。

我们先来证明: f(2m + 1) = f(2m),
首先,2m + 1 的每个划分中至少有一个1,去掉这个1,就得到 2m 的一个划分,故 f(2m + 1)≤f(2m)。
其次,2m 的每个划分加上个1,就构成了 2m + 1 的一个划分,故 f(2m)≤f(2m + 1)。
综上,f(2m + 1) = f(2m)。

接着我们要证明: f(2m) = f(2m - 1) + f(m),
把 B(2m) 中的划分中的1去掉一个,就得到 A(2m - 1) 中的一个划分,故 g(2m)≤f(2m - 1)。
把 A(2m - 1) 中的划分加上一个1,就得到 B(2m) 中的一个划分,故 f(2m - 1)≤g(2m)。
综上,g(2m) = f(2m - 1)。

把 C(2m) 中的划分的元素都除以2,就得到 A(m) 中的一个划分,故 h(2m)≤f(m)。
把 A(m) 中的划分的元素都乘2,就得到 C(2m) 中的一个划分,故 f(m)≤h(2m)。
综上,h(2m) = f(m)。

所以: f(2m) = g(2m) + h(2m) = f(2m - 1) + f(m)。

#include<iostream>
#include<cstdio>

using namespace std;

const int N = 1e6 + 10;

int main(){
    int n;
    int ans[N];
    ans[0] = ans[1] = 1;
    for(int i = 2; i < N; i++){
        if(i % 2 == 0) ans[i] = (ans[i - 1] + ans[i / 2]) % 1000000000;
        else ans[i] = ans[i - 1] % 1000000000;
    }
    while(scanf("%d", &n) != EOF){
        printf("%d\n", ans[n]);
    }
    return 0;
}

思路二:可以看成是完全背包求恰装满背包时的方案总数问题。具体是,因为每一个拆分必须是1,2,4,2 ^ 3,…2 ^ 19(考虑n最大为10 ^ 6),所以对于一个整数n,看它的这种拆分数有多少个,就相当于现在有20种物品,第 i 种物品的花费是2 ^ ( i - 1 ),每一种可以重复取,dp[ i ] [ j ]表示前i种物品恰装满容量为 j 的物品时的方案总数,从而dp [ i ] [ j ] = dp[ i - 1 ] [ j ] + dp[ i ] [ j - a [ i ] ]

#include<iostream>
#include<cstdio>
#include<cstring>

using namespace std;

const int N = 1e6 + 10;
int n, dp[N], arr[30];

int main(){
    for(int i = 1; i < 30; i++) arr[i] = 1 << i - 1;
    memset(dp, 0, sizeof(dp));
    dp[0] = 1;
    for(int i = 1; i < 30; i++){
        for(int j = arr[i]; j < N; j++){
            dp[j] += dp[j - arr[i]];
            dp[j] %= 1000000000;
        }
    }
    while(scanf("%d", &n) != EOF){
        printf("%d\n", dp[n]);
    }
    return 0;
}
  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2022-02-28 15:50:37  更:2022-02-28 15:52:42 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/10 2:19:46-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码