IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> 排序算法理解总结篇——冒泡排序、选择排序、插入排序、希尔排序、归并排序、堆排序、计数排序、基数排序、桶排序 -> 正文阅读

[数据结构与算法]排序算法理解总结篇——冒泡排序、选择排序、插入排序、希尔排序、归并排序、堆排序、计数排序、基数排序、桶排序

🍀排序算法-平均时间复杂度

排序算法平均时间复杂度
冒泡排序 O ( n 2 ) O(n^2) O(n2)
选择排序 O ( n 2 ) O(n^2) O(n2)
插入排序 O ( n 2 ) O(n^2) O(n2)
希尔排序 O ( n 1.5 ) O(n^{1.5}) O(n1.5)
归并排序 O ( n ? l o g N ) O(n*logN) O(n?logN)
堆排序 O ( n ? l o g N ) O(n*logN) O(n?logN)
快速排序 O ( n ? l o g N ) O(n*logN) O(n?logN)
计数排序 O ( n + k ) O(n+k) O(n+k)
基数排序 O ( n + k ) ) O(n+k)) O(n+k))
桶排序 O ( n + k ) O(n+k) O(n+k)

🍀 O ( n 2 ) O(n^2) O(n2)的排序算法

??冒泡排序

两个数比较大小,如要求是升序排序,则较大的数往下沉,较小的数往上冒。

伪代码

BubbleSort(A)
	for i = 1 to A.length-1
		for j = A.length-1 downto i
			if A[j] < A[j - 1]
				exchange A[j] with A[j - 1]

Java版

    public int[] BubbleSort(int[] list) {
        int len = list.length;
        for (int i = 1; i < len; i++) {
            for (int j = len - 1; j >= i; j--) {
                if(list[j] < list[j-1]) {
                    int tmp = list[j];
                    list[j] = list[j-1];
                    list[j-1] = tmp;
                }
            }
        }
        return list;
    }

Java泛型版

    public <T extends Comparable<T>> T[] BubbleSort(T list[]) {
        int len = list.length;
        for (int i = 1; i < len; i++) {
            for (int j = len - 1; j >= i; j--) {
                if (list[j].compareTo(list[j - 1]) > 0) {
                    T tmp = list[j];
                    list[j] = list[j - 1];
                    list[j - 1] = tmp;
                }
            }
        }
        return list;
    }

1、时间复杂度: O ( n 2 ) O(n^2) O(n2)
2、空间复杂度: O ( 1 ) O(1) O(1)
3、非稳定排序
4、原地排序

??选择排序

每次选择最小或者最大的元素排列到有序区。
在长度为N的无序数组中,第一次遍历n-1个数,找到最小的数值与第一个元素交换;
第二次遍历n-2个数,找到最小的数值与第二个元素交换;
重复。。。
第n-1次遍历,找到最小的数值与第n-1个元素交换,排序完成。

伪代码

SelectionSort(A)
	for i=1 to A.length-1
	    min=i 
	    for j=i+1 to A.length
	         if A[j]<A[min]
	            min=j
	     tem=A[min]
	     A[min]=A[i]
	     A[i]=tem

Java版

    public  int[] SelectionSort(int[] list) {
        int len = list.length, minT;
        for (int i = 0; i < len; i++) {
            minT = i;
            for (int j = i + 1; j < len; j++) {
                if (list[j] <list[minT])  {
                    minT = i;
                }
            }
            int tmp = list[minT];
            list[minT] = list[i];
            list[i] = tmp;
        }
        return list;
    }

Java泛型版

    public <T extends Comparable<T>> T[] SelectionSort(T[] list) {
        int len = list.length, minT;
        for (int i = 0; i < len; i++) {
            minT = i;
            for (int j = i + 1; j < len; j++) {
                if (list[j].compareTo(list[minT]) < 0) {
                    minT = i;
                }
            }
            T tmp = list[minT];
            list[minT] = list[i];
            list[i] = tmp;
        }
        return list;
    }

1、时间复杂度: O ( n 2 ) O(n^2) O(n2)
2、空间复杂度: O ( 1 ) O(1) O(1)
3、非稳定排序
4、原地排序

??插入排序

在要排序的一组数中,假定前n-1个数已经排好序,现在将第n个数插到前面的有序数列中,使得这n个数也是排好顺序的。如此反复循环,直到全部排好顺序。

伪代码

InsertionSort(A)
  for j = 2 to A.length
     key = A[j]
     i = j-1
     while i > 0 and A[i] > key
          A[i+1] = A[i]
          i = i -1
     A[i+1] = key

Java代码

    public int[] InsertionSort(int list[]) {
        int len = list.length;
        for (int i = 1; i < len; i++) {
            int tmp = list[i];
            int j = i - 1;
            // 将比插入元素值大的数往后移动
            while (j >= 0 && list[j] > tmp) {
                list[j + 1] = list[j];
                j--;
            }
            // 插入元素
            list[j + 1] = tmp;
        }
        return list;
    }

Java泛型版

    public <T extends Comparable<T>> T[] InsertionSort(T list[]) {
        int len = list.length;
        for (int i = 1; i < len; i++) {
            T tmp = list[i];
            int j = i - 1;
            // 将比插入元素值大的数往后移动
            while (j >= 0 && list[j].compareTo(tmp) > 0) {
                list[j + 1] = list[j];
                j--;
            }
            // 插入元素
            list[j + 1] = tmp;
        }
        return list;
    }

1、时间复杂度: O ( n 2 ) O(n^2) O(n2)
2、空间复杂度: O ( 1 ) O(1) O(1)
3、非稳定排序
4、原地排序

🍀 O ( n ? l o g N ) O(n*logN) O(n?logN)的排序算法

??希尔排序

在要排序的一组数中,根据某一增量分为若干子序列,并对子序列分别进行插入排序。
然后逐渐将增量减小,并重复上述过程。直至增量为1,此时数据序列基本有序,最后进行插入排序。

假如待排序数组基本有序,使用插入排序更有效。

伪代码

ShellSort(A)
  d=A.length
? do
?	d = d/2
?	for i = 1 to A.length - d
?     j = i + d
?	  if(A[i] > A[j]
?		exchange A[i] and A[j]
  while(d>1)

Java代码

    public int[] ShellSort(int list[]) {
        int len = list.length;
        int d = len;
        do {
            d /= 2;
            for (int i = 0; i < len - d; i++) {
                int j = i + d;
                if (list[j] < list[i]) {
                    int tmp = list[i];
                    list[i] = list[j];
                    list[j] = tmp;
                }
            }
        } while (d > 1);
        return list;
    }

Java泛型版

    public <T extends Comparable<T>> T[] ShellSort(T list[]) {
        int len = list.length;
        int d = len;
        do {
            d /= 2;
            for (int i = 0; i < len - d; i++) {
                int j = i + d;
                if (list[j].compareTo(list[i]) < 0) {
                    T tmp = list[i];
                    list[i] = list[j];
                    list[j] = tmp;
                }
            }
        } while (d > 1);
        return list;
    }

1、时间复杂度: O ( n l o g N ) O(nlogN) O(nlogN) - O ( n 2 ) O(n^2) O(n2),平均为 O ( n 1.5 ) O(n^{1.5}) O(n1.5)
2、空间复杂度:O(1)
3、非稳定排序
4、原地排序

??归并排序

归并算法是分治思想一个经典应用。
将大的数组一直分割,直到数组的大小为 1,此时只有一个元素,那么该数组就是有序的了,之后再把两个数组大小为1的合并成一个大小为2的,再把两个大小为2的合并成4的 …… 直到全部小的数组合并起来。

归并排序的分治思想

  1. 分解:分解待排序的n个元素的序列成各具 n/2 个元素的子序列
  2. 解决:使用归并排序递归地排序子序列
  3. 合并:合并两个已经排序的子序列以产生已排序的答案。

伪代码

Merge(A, p, q, r)
    n1 = q-p+1
    n2 = r-q
    //let L[1....n1+1] and R[1....n2+1] be new arrays
    for i =1 to n1
         L[i] = A[p+i-1]
    for j=1 to n2
        R[j] = A[q+j]
    L[n1+1] = ∞
    L[n2+1] = ∞
    i=1
    j=1
    for k =p to r
        if L[i]<=R[j]
            A[k] = L[i]
            i = i + 1
        else
            A[k]=R[j]
            j = j+1

MergeSort(A,p,r)
    if p < r
        q = ?(p+r)/2?  //向下取整
        MergeSort(A, p, q)
        MergeSort(A, q+1, r)
        Merge(A, p, q, r)

Java代码

    public int[] MergeSort(int list[]) {
        int tmp[] = new int[list.length]; //在排序前,先建好一个长度等于原数组长度的临时数组,避免递归中频繁开辟空间
        MergeSort(list, 0, list.length - 1, tmp);
        return list;
    }

    public void MergeSort(int[] list, int l, int r, int tmp[]) {
        if (l < r) {
            int mid = (l + r) / 2;
            MergeSort(list, l, mid, tmp);
            MergeSort(list, mid + 1, r, tmp);
            Merge(list, l, mid, r, tmp);
        }
    }

    void Merge(int list[], int l, int mid, int r, int tmp[]) {
        int i = l; //左序列指针
        int j = mid + 1; //右序列指针
        int t = 0; //临时数组指针
        while (i <= mid && j <= r) {
            if (list[i] <= list[j]) {
                tmp[t++] = list[i++];
            } else {
                tmp[t++] = list[j++];
            }
        }
        while (i <= mid) { //将左边剩余元素填充进temp中
            tmp[t++] = list[i++];
        }
        while (j <= r) { //将右序列剩余元素填充进temp中
            tmp[t++] = list[j++];
        }
        t = 0;
        //将temp中的元素全部拷贝到原数组中
        while (l <= r) {
            list[l++] = tmp[t++];
        }
    }

1、时间复杂度: O ( n l o g N ) O(nlogN) O(nlogN)
2、空间复杂度: O ( n ) O(n) O(n)
3、稳定排序
4、非原地排序

??堆排序

堆的特点就是堆顶的元素是一个最值,大顶堆的堆顶是最大值,小顶堆则是最小值。
建立大顶堆;
拿掉堆顶的元素,重新构建堆;
拿掉堆顶元素,重新构建堆。。。
等到堆剩余的元素只有一个的时候,此时的数组就是有序的了。

伪代码

HeapSort(A)
  BuildMaxHeap(A)
    for i = A.length downto 2
      exchange A[1] with A[i]
      A.heap-size = A.heap-size - 1
      MaxHeapify(A, 1)
// 建立大顶堆
BuildMaxHeap(A)
  A.heap-size = A.length
  for i = int(A.length / 2) downto 1
    MaxHeapify(A, i)
//维护堆
MaxHeapify(A, i)
  l = LEFT(i)
  r = RIGHT(i)
  if l <= A.heap-size and A[l] > A[i]
    largest = l
  else largest = i
  
  if r <= A.heap-size and A[r] > A[largest]
    largest = r

  if largest <> i
    exchange A[i] with A[largest]
    MaxHeapify(A, largest)

Java代码

    public int[] HeapSort(int list[]) {
        BuildMaxHeap(list);
        for (int i = list.length - 1; i >= 0; i--) {
            int tmp = list[0];
            list[0] = list[i];
            list[i] = tmp;
            MaxHeapify(list, 0, i);
        }
        return list;
    }

    public void BuildMaxHeap(int list[]) {
        // 构建大顶堆
        int heapSize = list.length;
        for (int i = (heapSize / 2); i >= 0; i--) {
            MaxHeapify(list, i, heapSize);
        }
    }

    public void MaxHeapify(int list[], int i, int heapSize) {
        // 维护堆
        int l = LEFT(i);
        int r = RIGHT(i);
        int largest;
        if (l <= heapSize - 1 && list[l] > list[i]) {
            largest = l;
        } else {
            largest = i;
        }
        if (r <= heapSize - 1 && list[r] > list[largest]) {
            largest = r;
        }
        if (largest != i) {
            int tmp = list[i];
            list[i] = list[largest];
            list[largest] = tmp;
            MaxHeapify(list, largest, heapSize);
        }
    }

    public int PARENT(int i) {
        return (i - 1) / 2;
    }

    public int LEFT(int i) {
        return 2 * i + 1;
    }

    public int RIGHT(int i) {
        return 2 * i + 2;
    }

1、时间复杂度: O ( n l o g N ) O(nlogN) O(nlogN)
2、空间复杂度: O ( 1 ) O(1) O(1)
3、非稳定排序
4、原地排序

??快速排序

同样是分治思想。
先从数列中取出一个数作为key值;
将比这个数小的数全部放在它的左边,大于或等于它的数全部放在它的右边;
对左右两个小数列重复第二步,直至各区间只有1个数。

伪代码

QuickSort(A, p, r)
  if  p < r
    q = Partition(A,p,r)
    QuickSort(A,p,q-1)
    QuickSort(A,q+1,r)

Partition(A, p, r)
  x = A[r]
  i = p-1
  for j = p to r-1
    if A[j] <= x   //<=与书上有区别,符号的区别,不会打那个。。。。
      i = i + 1
      exchange A[i] with A[j]
  exchange A[i+1] with A[r]
  return i + 1

Java代码

    public int[] QuickSort(int list[]) {
        QuickSort(list, 0, list.length - 1);
        return list;
    }

    public void QuickSort(int list[], int l, int r) {
        if (l < r) {
            int mid = Partition(list, l, r);
            QuickSort(list, l, mid - 1);
            QuickSort(list, mid + 1, r);
        }
    }

    public int Partition(int list[], int l, int r) {
        int x = list[r];
        int i = l - 1;
        for (int j = l; j <= r - 1; j++) {
            if (list[j] <= x) {
                i = i + 1;
                int tmp = list[i];
                list[i] = list[j];
                list[j] = tmp;
            }
        }
        int tmp = list[i + 1];
        list[i + 1] = list[r];
        list[r] = tmp;
        return i + 1;
    }

1、时间复杂度: O ( n l o g N ) O(nlogN) O(nlogN)
2、空间复杂度: O ( l o g N ) O(logN) O(logN)
3、非稳定排序
4、原地排序

🍀 O ( n + k ) O(n+k) O(n+k)的排序算法、非比较排序

??计数排序

把数组元素作为数组的下标,然后用一个临时数组统计该元素出现的次数,例如 temp[i] = n, 表示元素 i 一共出现了 n 次。最后再把临时数组统计的数据从小到大汇总起来,此时汇总起来是数据是有序的。

计数排序比较适用于待排序数组中最大值和最小值相差不大的排序。

伪代码

CountingSort(A,B,k)
  let C[0..k] be a new array
  for i = 0 to k //后面需要使用数组C来存储A中各元素的出现次数,所以需要清零操作
    C[i] = 0
  for j = 1 to A.length 
    C[A[j]] = C[A[j]] + 1 //统计A中各元素的出现次数存储在C中,C中下标为A中的元素值,与其对应的数组元素为出现次数,如C[1] = 0,即为“1”在A中的出现次数为0
  for i = 1 to k 
    C[i] = C[i] + C[i-1] //计算A中小于等于i的一共有多少个,方便此后将i放在数组B中正确的位置上
  for j = A.length downto 1
    B[C[A[j]]] = A[j] //使用A中元素A[j]的出现次数作为B中的下标,把每个元素放在B中适当的位置
    C[A[j]] = C[A[j]] -1 //在B中放入一个元素,与其对应C中出现的次数-1。这样,当遇到下一个等于A[j]的输入元素时,该元素可以被直接放到B中A[j]的前一位置上

Java代码

    public int[] CountingSort(int list[]) {
        int maxNum = Arrays.stream(list).max().getAsInt();
        CountingSort(list, maxNum);
        return list;
    }

    public void CountingSort(int list[], int maxNum) {
        int tmp[] = new int[maxNum + 1];
        int res[] = new int[list.length];
        for (int item : list) {
            tmp[item]++;
        }
        for (int i = 1; i < tmp.length; i++) {
            tmp[i] += tmp[i - 1];
        }
        for (int i = list.length - 1; i >= 0; i--) {
            // 数组下标从0开始,此处减1
            res[tmp[list[i]]-1] = list[i];
            tmp[list[i]]--;
        }
    }

1、时间复杂度: O ( n + k ) O(n+k) O(n+k) ,K:建立的计数数组长度
2、空间复杂度: O ( n + k ) O(n+k) O(n+k)
3、稳定排序
4、非原地排序

??基数排序

先以个位数的大小来对数据进行排序,接着以十位数的大小来多数进行排序,接着以百位数的大小。。。
排到最后,就是一组有序的元素了。

伪代码

RADIXSORT(A,d) // d:最高位数
  for i = 1 to d
    use a stable sort to sort array A on digit i // 从个位数至高位数依次重复排序

Java代码

    public int[] RadixSort(int list[]) {
        int maxNum = Arrays.stream(list).max().getAsInt();
        int d = 0;
        while(maxNum!=0) {
            maxNum /=10;
            d++;
        }
        RadixSort(list,d);
        return list;
    }

    public void RadixSort(int list[], int d) {
        int[] res = new int[list.length];//结果数组
        int[] tmp = new int[10];//计数数组,范围为每位上的取值范围0-9

        //一个十进制数m,它的个位数是m/1%10,十位数是m/10%10,百位数是m/100%10
        for(int i=0;i<d;i++) {
            int division = (int)Math.pow(10, i);//取个位::/1 十位:/10 百位:/100中的基本划分点
            for(int j=0;j<list.length;j++) {
                int num = list[j]/division%10;//取个位 十位 或百位上的数,每轮由此位置上的数大小进行计数排序
                tmp[num]=tmp[num]+1;//进行计数排序中计数数组的更新
            }

            //计数排序中计数数组count的累加,保证稳定性
            for(int m=1;m<tmp.length;m++) {
                tmp[m]=tmp[m]+tmp[m-1];
            }

            //计数排序中逆序遍历原数组A,根据累加后的数组count将A中每个元素正确填入result中正确的位置中
            for(int j=list.length-1;j>=0;j--) {
                int num = list[j]/division%10;
                res[tmp[num]-1]=list[j];
                tmp[num]=tmp[num]-1;
            }

            //将数组A更新为数组B
            for(int j=0;j<list.length;j++) {
                list[j]=res[j];
            }
            //将数组C清零,进行下一轮的循环
            for(int j=0;j<tmp.length;j++) {
                tmp[j]=0;
            }
        }
    }

1、时间复杂度: O ( n + k ) O(n+k) O(n+k) ,K:建立的计数数组长度
2、空间复杂度: O ( n + k ) O(n+k) O(n+k)
3、稳定排序
4、非原地排序

??桶排序

把最大值和最小值之间的数进行瓜分,例如分成 10 个区间,10个区间对应10个桶,我们把各元素放到对应区间的桶中去,再对每个桶中的数进行排序,对桶中元素排序可采用其他排序方法。每个桶排序后再合并起来形成有序数组。

伪代码

BucketSort(A)
  n = A.length
  let B[0...n-1] be a new array
  for i = 0 to n-1
    b[i]=0
    //make B an empty list
  for i =1 to n
	insert A[i] into list B[(int)nA[i]]
  for i =0 to n-1
    sort list B[i] with insertion sort
  concatenate hte lists B[0...n-1] together in order

Java代码

	class LinkedNode {
        public int value;
        public LinkedNode next;
        public LinkedNode(int value) {
            this.value = value;
        }
    }

    public int[] BucketSort(int list[]) {
        int length = list.length;
        LinkedNode[] bucket = new LinkedNode[length];  // 桶的个数等于length
        int max = list[0];  // 求max
        for (int i = 1; i < list.length; i++) {
            if (list[i] > max) {
                max = list[i];
            }
        }
        // 入桶
        for (int i = 0; i < length; i++) {
            int value = list[i];  // 扫描每个元素
            int hash = hash(list[i], max, length);  // 桶的下标
            if (bucket[hash] == null) {
                bucket[hash] = new LinkedNode(value);  // 初始化链表
            } else {
                insertInto(value, bucket[hash], bucket, hash);  // 插入链表
            }
        }
        int k = 0; // 记录数组下标
        // 出桶,回填arr
        for (LinkedNode node : bucket) {
            if (node != null) {
                while (node != null) {
                    list[k++] = node.value;
                    node = node.next;
                }
            }
        }
        return list;
    }

    private int hash(int element, int max, int length) {
        return (element * length) / (max + 1);
    }

    private void insertInto(int value, LinkedNode head, LinkedNode[] bucket, int hash) {
        LinkedNode newNode = new LinkedNode(value);
        // 小于头节点,放在头上
        if (value <= head.value) {
            newNode.next = head;
            // 替换头节点
            bucket[hash] = newNode;
            return;
        }
        // 往后找第一个比当前值大的节点,放在这个节点的前面
        LinkedNode p = head;
        LinkedNode pre = p;
        while (p != null && value > p.value) {
            pre = p;
            p = p.next;
        }
        if (p == null) {  // 跑到末尾了
            pre.next = newNode;
        } else {             // 插入pre和p之间
            pre.next = newNode;
            newNode.next = p;
        }
    }

1、时间复杂度: O ( n + k ) O(n+k) O(n+k) ,K:建立的计数数组长度
2、空间复杂度: O ( n + k ) O(n+k) O(n+k)
3、稳定排序
4、非原地排序

  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2022-03-06 13:22:01  更:2022-03-06 13:26:38 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/10 1:52:19-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码