IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> 一维角度跟踪的kalman算法(C语言+matlab) -> 正文阅读

[数据结构与算法]一维角度跟踪的kalman算法(C语言+matlab)

一维角度跟踪的kalman算法(C语言+matlab)

1 matlab

% ---------机载卫通角度自跟踪研究
% 1、目标捕获。  目的:获得目标大致的俯仰角theta0
% 2、单脉冲测角。目的:获得目标精准的俯仰角thetas 
% 3、卡尔曼滤波。目的:获得滤波后的角度thetas_est



close all;
clear all;
clc;



%----------------参数设置
%  主函数相关参数
T=1;          % 滤波周期
M=100;        % 仿真步数

%  目标捕获函数相关参数
c=3e8;        % 光速
f=3e9;        % 信号频率
fs=20*f;      % 采样频率
N=8;          % 阵元个数
bujing=1;     % 扫描步进
count=6000;   % 采样点数
SNR=-20;      % 信噪比

% 单脉冲测角相关参数
bujing1=1;   % 扫描步进
SNR1=-20;     % 信噪比
count1=3000;
thetak=0.5*(100/N);% 子波束与跟踪轴的夹角


%  卡尔曼滤波函数相关参数
% TT=[T*T/2,0,0;T,0,0;0,T*T/2,0;0,T,0;0,0,T*T/2;0,0,T]; %状态噪声的输入矩阵(XYZ)
TT=[T*T/2,0;T,0;0,T*T/2;0,T]; % 状态噪声的输入矩阵(XY)
Q1=0.1*eye(2);   % 两个方向的伪加速度
Q=TT*Q1*TT';      % 系统状态噪声的方差  因为目标的状态在变化,所以不可以精确建模,故有状态噪声 
% Q=10*eye(4) ;   % 系统状态噪声的方差  因为目标的状态在变化,所以不可以精确建模,故有状态噪声 
Error_est =10;  % 测量误差的方差;







%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%      设定目标运动轨迹
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
X=[];           % 目标水平方向的真实位置、速度;垂直方向的的真实位置
r=[];           % 目标与原点的距离
X0 = 2000;
Y0 = 5000;
Vx = 300;
Vy = 200;
Y(:,1)=[X0,Vx,Y0,Vy];      % 目标初始位置为(100,100)、初始速度为(200,100) x,vx,y,vy
F=[1,T,0,0;0,1,0,0;0,0,1,T;0,0,0,1];% 状态转移矩阵
w=sqrt(Q)*randn(4,M);  % 在匀速运动轨迹上叠加噪声
for p=2:M
    Y(:,p)=F*Y(:,p-1)+w(:,p);   % 目标运动轨迹方程
%     Y(:,p)=F*Y(:,p-1);            % 目标运动轨迹方程
    r(p)=sqrt(Y(1,p)^2+Y(3,p)^2);
    theta_true(p)=acos(Y(3,p)/r(p))*180/pi;
end
% 循环从2开始,所以需要下面两行代码
r(1)=sqrt(Y(1,1)^2+Y(3,1)^2);
theta_true(1)=acos(Y(3,1)/r(1))*180/pi;  % 将位置换成角度


% figure(1)
% plot(Y(1,:),Y(3,:)); grid on;
% xlabel('X坐标/m');ylabel('Y坐标/m');
% % title('目标的运动轨迹');
% figure(2)
% plot(theta_true); grid on;
% xlabel('迭代次数');ylabel('角度');
% % title('目标角度的运动轨迹');



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%            第零次迭代
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%------------初始化      初始值越接近于真值,则收敛越快
% X_pre=[sind(theta_true(1)),cosd(theta_true(1)),cosd(theta_true(1)),-sind(theta_true(1))]'; % 飞机初始位置和速度  相当于X(0,0% X_est=[sind(theta_true(1)),(sind(theta_true(2))-sind(theta_true(1)))/T,cosd(theta_true(1)),(cosd(theta_true(2))-cosd(theta_true(1)))/T]'; 
% P_pre=1e-2*eye(4);              % 状态误差自相关矩阵的估计值的初始值    相当于P(0,0%------------预测
% X_pre=F*X_est;     % 预测下一时刻飞机的位置和速度  相当于X(1,0% X_pre=X_est;         % 预测下一时刻飞机的位置和速度  相当于X(1,0% P_pre=P_est;         % 状态误差自相关矩阵预测方程。相当于P(1,0%%%%%%%%测量值%%%%%%%%%%%%%%%%%
% theta0 = theta_true + sqrt(Error_est)*randn(1,M); % 第一次的测量值


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%   函数功能:测量目标大致角度
%   调用函数: 目标捕获
%   输入参数:  目标运动轨迹角度theta_ture
%   输出参数: 粗捕获得到的目标大致角度theta0 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
theta0=target_get(theta_true(1),c,f,fs,N,bujing,count,SNR);% 跟踪轴角度  每次搜索更新跟踪轴角度 
for p=1:M  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %   调用函数:单脉冲测角
    %   输入参数:跟踪轴角度theta0,目标偏离跟踪轴的角度thetat
    %   输出参数:单脉冲测角得到的目标真实角度thetas
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    if (p==1)
        thetat(p)=theta_true(p)-theta0;  % 用粗捕获的角度作为跟踪轴
        thetas(p)=dmc_angle_esti(theta0,thetat(p),c,f,fs,N,bujing1,count1,SNR1,thetak);% 调用单脉冲测角函数
    else
        thetat(p)=theta_true(p)-thetas(p-1); % 用上一次的单脉冲测角角度作为跟踪轴
        thetas(p)=dmc_angle_esti(thetas(p-1),thetat(p),c,f,fs,N,bujing1,count1,SNR1,thetak);% 调用单脉冲测角函数
    end
end  
% 5% thetas=[21.5076548036461,23.9035640695852,25.2549934363390,26.9359550143116,28.8976558818146];

% 100次
thetas=[21.5076548036461,23.9035640695852,25.2549934363390,26.9359550143116,28.8976558818146,31.0009336978619,30.8565778509341,32.3050100914770,34.1862053875184,34.6904798952295,35.6555170269539,36.8713678226845,37.1700434897918,37.8389043614815,37.8665872036294,39.7945125094379,39.6106898841655,40.4003792934401,41.4180428538889,41.4790716187582,41.9403468544136,42.9627346703708,42.8729673509037,43.4776654550822,43.7688342799448,43.1743927104658,44.2316718831226,44.4622411398221,44.4357070013545,45.3733188602618,45.5381975917392,46.5509298322948,45.6779847577037,47.1478396968443,46.2527226765848,46.3331447782597,47.4674626156377,45.8765540678496,47.1034394976255,46.8513567531198,48.6420380019551,48.8216730355858,48.0296108609148,48.3289066445719,49.1132668391982,48.0066000039878,48.7820375861355,48.6914931956388,48.6337594800962,48.6157152073843,49.4954097429769,49.9225918920769,49.2825002645643,49.5208738839231,50.2002660345929,49.5801729922124,50.9578089119918,48.6497288186680,50.2503630361635,49.4157770529638,50.6370793324727,50.9491032882535,51.2537774460507,51.3993217927973,49.6599949628813,50.1393171940319,51.0485148999235,51.2377563456300,51.3944425778218,50.3739007440455,51.3243416853895,51.1267954929477,51.0013308184272,50.8653367318906,52.7125778551996,51.3631307431436,51.5294521250658,52.0227598624784,51.5894953246860,51.7960221122716,50.7512572053516,51.4269769710341,52.1261355228410,51.3940536344455,51.3188234648857,52.3363148397478,52.3472901324124,51.3844978167153,51.6115223790734,52.5232396047085,53.1894031569837,53.3431758996074,54.2913611442235,52.8017240930785,51.7148643527885,51.6888832902782,52.5546540827346,52.7532214510904,53.6832072070126,53.7407670804744];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%            第零次迭代
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%------------初始化      初始值越接近于真值,则收敛越快
X_pre=[sind(thetas(1)),cosd(thetas(1)),cosd(thetas(1)),-sind(thetas(1))]'; % 飞机初始位置和速度  相当于X(0,0)

P_pre=1e-2*eye(4);              % 状态误差自相关矩阵的估计值的初始值    相当于P(0,0%------------预测
% X_pre=F*X_est;     % 预测下一时刻飞机的位置和速度  相当于X(1,0% X_pre=X_est;         % 预测下一时刻飞机的位置和速度  相当于X(1,0% P_pre=P_est;         % 状态误差自相关矩阵预测方程。相当于P(1,0for p=1:M       
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %   函数功能:卡尔曼滤波   更新估计、预测
    %   输入参数:状态预测值,估计误差预测值,目标捕获得到的角度,状态转移矩阵,状态噪声方差,测量噪声方差
    %   输出参数:卡尔曼滤波的角度thetas_est,下一时刻的预测值,估计误差的预测值
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    [X_est(:,p),X_pre,P_pre] = KEM_tracking( X_pre,P_pre,thetas(p),F,Q,Error_est); 
%     theta_est(p) = atand(X_est(1,p)/X_est(3,p));
    theta_est(p)  = acos(X_est(3,p)/( sqrt( X_est(1,p)*X_est(1,p)+X_est(3,p)*X_est(3,p)) ))*180.0/pi;

%     if (X_est(3,p)>1)% 如果角度的余弦值大于1,将估计角度固定为90%         theta_est(p)=90;  
%     else
%        theta_est(p) = acosd(X_est(3,p)); 
%     end
       
       
 end
for p=1:length(thetas)  % 最后20次结果
    fprintf('thetas[%g]    is %g\n',p-1,thetas(p));
    fprintf('theta_KEM[%g] is %g\n',p-1,theta_est(p));
end


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%      滤波平均角度误差计算
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% error=0;
% for p=1:50  % 最后20次结果
%     error=error+abs(theta_est(M-50+p)-theta_true(M-50+p));
% end
% fprintf('滤波平均角度误差为%g\n',error/50);
    
    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%            绘图
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% figure(3)
% plot(theta_true,'-r');hold on; % 目标真实轨迹的真实角度
% plot(thetas,'-bo');hold on;     % 单脉冲测角得到的角度
% plot(theta_est,'-k*');grid on;  % 卡尔曼滤波得到的目标角度
% legend('目标真实角度','单脉冲测角得到的角度','卡尔曼估计的角度');
% xlabel('跟踪步数');ylabel('角度/度');

% figure(4)
% plot(thetas-theta_true,'-bo');hold on;    % 单脉冲测角得到的目标角度误差
% plot(theta_est-theta_true,'-k*');grid on; % 卡尔曼估计的角度误差
% legend('单脉冲测角得到的角度误差','卡尔曼估计的角度误差');
% xlabel('跟踪步数');ylabel('角度/度');

function [X_est,X_pre,P_pre] = KEM_tracking(X_pre,P_pre,theta_m,F,Q,Error_est)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%   函数功能:卡尔曼滤波      更新估计、预测
%   输入参数:状态预测值,估计误差预测值,目标捕获得到的角度,状态转移矩阵,状态噪声方差,测量噪声方差
%   输出参数:卡尔曼滤波的角度thetas_est,下一时刻的预测值,估计误差的预测值
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


% 观测方程的系数矩阵
H=[1,0,0,0;0,0,1,0];       
% 观测值
Z=[sind(theta_m) cosd(theta_m)]';
% fprintf('Z(1)=%g\n',Z(1));
% fprintf('Z(2)=%g\n',Z(2));


%测量误差
% T = [cosd(theta_true) -sind(theta_true)]';
% R = T*[Error_est]*T';
R =Error_est*eye(2); 


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%     开始迭代过程(第一次迭代等等)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% for p=1:length(X_pre)
%     fprintf('X_pre[%g] is %g\n',p,X_pre(p,1));
% end
% 更新
a=Z -H*X_pre;          % 新息计算
% fprintf('a(1)=%g\n',a(1));
% fprintf('a(2)=%g\n',a(2));

A=H*P_pre*H'+R  ;      % 新息过程的自相关矩阵
% for p=1:2
%     for q=1:2
%         fprintf('A[%g][%g] is %g\n',p,q,A(p,q));
%     end
% end

K=P_pre*H'*inv(A);      % 计算卡尔曼增益

X_est=X_pre+K*a;   % 状态估计

% 法一
% P_est=(eye(4)-K*H)*P_pre*(eye(4)-K*H)'+K*R*K'; % 估计误差自相关矩阵

%2
P_1=(eye(4)-K*H);   % // P_1=(eye(4)-K*H) 维度:4*2 * 2*4=4*4
P_1_est= P_1*P_pre;  %  P_1_est=(eye(4)-K*H)*P_pre = P_1*P_pre
P_2_L=K*R;    %P_2_L=K*R
P_2 =P_2_L*K';% P_2=K*R*K'=P_2_L*K'
P_est=P_1_est*(P_1)'+P_2; % 估计误差自相关矩阵




% 预测
X_pre = F*X_est ;   % 下一时刻状态的预测值  相当于X(n+1,n)
P_pre = F*P_est*F'+Q;          % 预测状态误差自相关矩阵  相当于P(n+1,n)
    
    

end

2 C语言

/*    函数功能:
		卡尔曼滤波
*/ 
#include<stdio.h>
#include<stdlib.h>
#include<math.h>


#define PI 3.1415926
#define COUNT 100


/*---------参数定义--------*/
int p;
int q;
int r;
int n;// 采样序列号


//theta_m的值表示MATLAB的测角结果
// 5次
//double theta_m[COUNT]={21.5076548036461,23.9035640695852,25.2549934363390,26.9359550143116,28.8976558818146};

// 100次
double theta_m[COUNT]={21.5076548036461,23.9035640695852,25.2549934363390,26.9359550143116,28.8976558818146,31.0009336978619,30.8565778509341,32.3050100914770,34.1862053875184,34.6904798952295,35.6555170269539,36.8713678226845,37.1700434897918,37.8389043614815,37.8665872036294,39.7945125094379,39.6106898841655,40.4003792934401,41.4180428538889,41.4790716187582,41.9403468544136,42.9627346703708,42.8729673509037,43.4776654550822,43.7688342799448,43.1743927104658,44.2316718831226,44.4622411398221,44.4357070013545,45.3733188602618,45.5381975917392,46.5509298322948,45.6779847577037,47.1478396968443,46.2527226765848,46.3331447782597,47.4674626156377,45.8765540678496,47.1034394976255,46.8513567531198,48.6420380019551,48.8216730355858,48.0296108609148,48.3289066445719,49.1132668391982,48.0066000039878,48.7820375861355,48.6914931956388,48.6337594800962,48.6157152073843,49.4954097429769,49.9225918920769,49.2825002645643,49.5208738839231,50.2002660345929,49.5801729922124,50.9578089119918,48.6497288186680,50.2503630361635,49.4157770529638,50.6370793324727,50.9491032882535,51.2537774460507,51.3993217927973,49.6599949628813,50.1393171940319,51.0485148999235,51.2377563456300,51.3944425778218,50.3739007440455,51.3243416853895,51.1267954929477,51.0013308184272,50.8653367318906,52.7125778551996,51.3631307431436,51.5294521250658,52.0227598624784,51.5894953246860,51.7960221122716,50.7512572053516,51.4269769710341,52.1261355228410,51.3940536344455,51.3188234648857,52.3363148397478,52.3472901324124,51.3844978167153,51.6115223790734,52.5232396047085,53.1894031569837,53.3431758996074,54.2913611442235,52.8017240930785,51.7148643527885,51.6888832902782,52.5546540827346,52.7532214510904,53.6832072070126,53.7407670804744};

double thetas_KEM[COUNT]={0};// 滤波角度


// 卡尔曼滤波相关参数
double X_pre[4][1]={{0},{0},{0},{0}};
double X_est[4][1]={{0},{0},{0},{0}};
double P_pre[4][4]={0};// 初始化

double T=1;// 滤波周期
double TT[4][2]={{T*T/2,0},{T,0},{0,T*T/2},{0,T}};
double TT_z[2][4]={ {T*T/2,T,0,0},{0,0,T*T/2,T} };
double Q1[2][2]={{0.1,0},{0,0.1}}; // 两个方向的伪加速度
double Q_temp[4][2]={0};// 中间变量
double	Q[4][4]={0};  // 系统状态噪声的斜方差矩阵
double F[4][4]={{1,T,0,0},{0,1,0,0},{0,0,1,T},{0,0,0,1}};// 状态转移矩阵
// 现在测量的角度是在一个固定的角度上上下波动,相当于目标不动,所以此时速度为0
//double F[4][4]={{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}};// 状态转移矩阵  

double Error_est =10;   //测量误差的方差;



/*  定义一个结构体,用来返回子函数的多个参数   */ 
typedef   struct//结构体
{
	double   X_est[4][1];//状态估计值
	double   X_pre[4][1];//状态预测值
	double   P_pre[4][4];//估计误差协方差矩阵的预测值
}KEM_struct;// 声明了一个结构体 KEM_struct


// 结构体声明
KEM_struct KEM_back_parameter;// 卡尔曼滤波函数返回的参数





/*------------------子函数声明----------------*/
KEM_struct KEM_func(double X_pre[][1],double P_pre[][4],double thetam,double F[][4],double Q[][4],double Error_est);





/*-------------------主函数----------------*/
int main()
{
	printf("beign\r\n");

	/*---------1、得到观测值(模拟单脉冲测角的测角结果)-------
	// 定义theta_m时已经产生
	
	double rand_suijishu;//在真实值上叠加噪声
	for (n=0;n<COUNT;n++)
	{
		rand_suijishu=rand() % 5 - 2 ;// 产生-2到2的随机数
		theta_m[n]=rand_suijishu/10.0+10;// 真实值上叠加噪声
		printf("theta_m[%d] is %.3f\r\n",n,theta_m[n]);
	}*/



	/*---------2、得到卡尔曼滤波所需的参数值--------*/

	/*    Q=TT*Q1*TT'  维度:4*4 */  
	//计算得到Q_temp=TT*Q1  维度:4*2
	for (p=0;p<4;p++)
	{
		for (q=0;q<2;q++)
		{
			for (r=0;r<2;r++)
			{
				Q_temp[p][q]=Q_temp[p][q]+TT[p][r]*Q1[r][q] ;
			}
		}
	} 
	//Q=TT*Q1*TT'=Q_temp*TT'  维度:4*4
	for (p=0;p<4;p++)
	{
		for (q=0;q<4;q++)
		{
			for (r=0;r<2;r++)
			{
				Q[p][q]=Q[p][q]+Q_temp[p][r]*TT_z[r][q] ;
			}
			//printf("Q[%d][%d] is %.3f\r\n",p,q,Q[p][q]);  // 经验证,正确
		}
	}






	/*-----------3、初始化--------------*/ 
	// 状态矢量初始化
	X_pre[0][0]=sin(theta_m[0]*PI/180);
	X_pre[1][0]=cos(theta_m[0]*PI/180);
	X_pre[2][0]=cos(theta_m[0]*PI/180);
	X_pre[3][0]=-sin(theta_m[0]*PI/180); // 飞机初始位置和速度  相当于X(0,0)
	//printf("X_pre[0][0] is %.4f\r\n",X_pre[0][0]);
	//printf("X_pre[1][0] is %.4f\r\n",X_pre[1][0]);
	//printf("X_pre[2][0] is %.4f\r\n",X_pre[2][0]);
	//printf("X_pre[3][0] is %.4f\r\n",X_pre[3][0]);// 经验证,正确

	// 在定义P_pre的时候,已经对P_pre初始化
	//P_pre=0.01*eye(4);             // 状态误差自相关矩阵的估计值的初始值    相当于P(0,0)
	for (p=0;p<4;p++)
	{
		for (q=0;q<4;q++)
		{
			if(p==q)
				P_pre[p][q]=0.01;
			else
				P_pre[p][q]=0;
			
			//printf("P_pre[%d][%d] is %.4f\r\n",p,q,P_pre[p][q]);// 经验证,正确
		}
	}


	/*---------4、卡尔曼滤波--------*/
	for (n=0;n<COUNT;n++)
	{	
		KEM_back_parameter=KEM_func(X_pre,P_pre,theta_m[n],F,Q,Error_est);
		for (p=0;p<4;p++)
		{
			X_est[p][0]=KEM_back_parameter.X_est[p][0] ;
			X_pre[p][0]=KEM_back_parameter.X_pre[p][0] ;
		}
		for (p=0;p<4;p++)
		{
			for (q=0;q<4;q++)
			{
				P_pre[p][q]=KEM_back_parameter.P_pre[p][q] ;
			}
		}

		//滤波后的角度
		/*
		if (X_est[2][0]>1.0)// 如果角度的余弦值大于1,将估计角度固定为90度
			theta_filter[n]=90.0;  
		else
			theta_filter[n] = acos(X_est[2][0])*180.0/PI;
		*/

		thetas_KEM[n] = acos(X_est[2][0]/( sqrt( X_est[2][0]*X_est[2][0]+X_est[0][0]*X_est[0][0] ) ))*180.0/PI;
		//theta_filter[n] = atan(X_est[0][0]/X_est[2][0])*180.0/PI;
	
		//printf("n is %d\r\n",n);
		printf("thetas[%d]     is %.4f\r\n",n,theta_m[n]);
		printf("thetas_KEM[%d] is %.4f\r\n",n,thetas_KEM[n]);


	}


    return 0;
}






/*--------------子函数----------------*/
KEM_struct KEM_func(double X_pre[][1],double P_pre[][4],double thetam,double F[][4],double Q[][4],double Error_est)
{

	double A1[2][4]={0};
	double a[2][1]={0};
	double A[2][2]={0};
	double A_inv[2][2]={0};
	double K[4][2]={0};
	double K_z[2][4]={0};
	double K1[4][2]={0};
	double K_2L[4][2]={0};


	double P_1[4][4]={0};
	double P_1_est[4][4]={0};
	double P_2_L[4][2]={0};
	double P_2[4][4]={0};
	double P_1_z[4][4]={0};
	double P_est[4][4]={0};


	double F_z[4][4]={0};
	double F_P[4][4]={0};



	/*----------中间变量清零--------------*/
	for (p=0;p<2;p++)
	{
		for (q=0;q<2;q++)
		{
			A[p][q]=0;
			A_inv[p][q]=0;
		}
	}
	for (p=0;p<2;p++)
	{
		for (q=0;q<4;q++)
		{
			K_z[p][q]=0;
			A1[p][q]=0;
		}
	}
	for (p=0;p<4;p++)
	{
		for (q=0;q<2;q++)
		{
			K[p][q]=0;
			K1[p][q]=0;
			K_2L[p][q]=0;
			P_2_L[p][q]=0;
		}
	}
	for (p=0;p<4;p++)
	{
		for (q=0;q<4;q++)
		{
			P_1[p][q]=0;
			P_1_est[p][q]=0;

			P_2[p][q]=0;
			P_1_z[p][q]=0;
			P_est[p][q]=0;

			F_z[p][q]=0;
			F_P[p][q]=0;
		}
	}




	// 观测方程的系数矩阵  维度:2*4
	double H[2][4]={ {1,0,0,0}, {0,0,1,0}};   
    double H_z[4][2]={ {1,0},{0,0},{0,1},{0,0} }; 


	// 观测值  维度:2*1
	double Z[2][1]={{sin(thetam*PI/180.0)},{cos(thetam*PI/180.0)}}; // 经验证,正确
	//printf(" Z[0][0] is %.4f\r\n", Z[0][0]);
	//printf(" Z[1][0] is %.4f\r\n", Z[1][0]);

	//测量误差
	double R[2][2] ={{Error_est,0},{0,Error_est}}; 



	/*---------开始迭代过程-----------*/
	//for (p=0;p<4;p++)
	//{
	//	printf("X_pre[%d][0] is %.4f\n",p,X_pre[p][0]);
	//}
	/*-------------更新---------------*/ 	
	//  新息计算     a=Z -H*X_pre  维度:2*1
	a[0][0]=Z[0][0] -H[0][0]*X_pre[0][0];          
	a[1][0]=Z[1][0] -H[1][2]*X_pre[2][0];           
	//printf("a[0][0] is %.4f\r\n",a[0][0]);
	//printf("a[1][0] is %.4f\r\n",a[1][0]);


	// 新息过程的自相关矩阵   A=H*P_pre*H'+R; 	  维度:2*2 
	// 计算 A1=H*P_pre   维度:2*4*4*4=2*4 
	for (p=0;p<2;p++)
	{
		for (q=0;q<4;q++)
		{	
			for(r=0;r<4;r++)
			{
				A1[p][q]=A1[p][q]+H[p][r]*P_pre[r][q];
			}
		}
	}	
	// 计算 A=H*P_pre*H'+R=A1*H'+R
	for (p=0;p<2;p++)
	{
		for (q=0;q<2;q++)
		{	
			for(r=0;r<4;r++)
			{
				A[p][q]=A[p][q]+A1[p][r]*H_z[r][q]+R[p][q]/4.0;// 因为r循环了4次,所以要除以4			
			}
			//printf("A[%d][%d] is %.4f\n",p,q,A[p][q]);
		}
	}
	//printf("A[0][0] is %.4f\n",A[0][0]);



	// 计算卡尔曼增益	K=P_pre*H'*inv(A);  维度:4*2
	// 计算A_inv=inv(A)   维度:2*2
	double A1_inv[2][2]={{A[1][1],-A[0][1]},{-A[1][0],A[0][0]}};//中间变量
	for (p=0;p<2;p++)
	{
		for (q=0;q<2;q++)
		{
			A_inv[p][q]=A1_inv[p][q]/(A[0][0]*A[1][1]-A[1][0]*A[0][1]);
		}
	}


	//计算 P_pre*H'=K1  维度:4*2
	for (p=0;p<4;p++)
	{
		for (q=0;q<2;q++)
		{
			for(r=0;r<4;r++)
			{
				K1[p][q]=K1[p][q]+P_pre[p][r]*H_z[r][q];
			}
		}
	}
	//计算 K=P_pre*H'*inv(A)=K1 *inv(A)  维度:4*2
	for (p=0;p<4;p++)
	{
		for (q=0;q<2;q++)
		{
			for(r=0;r<2;r++)
			{
				K[p][q]=K[p][q]+K1[p][r]*A_inv[r][q];// A_inv如何求解
			}
			//printf("K[%d][%d] is %.4f\n",p,q,K[p][q]);
		}
	}	
	//printf("K[0][0] is %.4f\n",K[0][0]);


      
	// 状态估计   X_est[4]=X_pre[4]+K*a; 维度:4*2 * 2*1=4*1
	double X1_est[4][1]={0};
	for (p=0;p<4;p++)
	{
		X1_est[p][0]=K[p][0]*a[0][0]+K[p][1]*a[1][0];// 计算K*a=X1_est    维度:4*2 * 2*1=4*1
		X_est[p][0]=X_pre[p][0]+X1_est[p][0];
		//printf("X_est[%d][0] is %.4f\n",p,X_est[p][0]);
	}




	// 估计误差自相关矩阵   P_est=(eye(4)-K*H)*P_pre *(eye(4)-K*H)'+K*R*K'; 维度:4*4
	// 中间变量:P_1=(eye(4)-K*H)   P_1_z=(eye(4)-K*H)'  P_2=K*R*K'
	// 计算 P_1=(eye(4)-K*H) 维度:4*2 * 2*4=4*4
	for (p=0;p<4;p++)
	{
		for (q=0;q<4;q++)
		{		
			if (p==q)
				P_1[p][q]=1-(K[p][0]*H[0][q]+K[p][1]*H[1][q]);
			else 
				P_1[p][q]=0-(K[p][0]*H[0][q]+K[p][1]*H[1][q]);
		///	printf("P_1[%d][%d] is %.4f\n",p,q,P_1[p][q]); //前两个正确
		}
	}

	// 计算 P_1_est=(eye(4)-K*H)*P_pre = P_1*P_pre  维度:4*4
	for (p=0;p<4;p++)
	{
		for (q=0;q<4;q++)
		{		
			for (r=0;r<4;r++)
			{		 
				P_1_est[p][q]=P_1_est[p][q]+P_1[p][r]*P_pre[r][q];
			}
			//printf("P_1_est[%d][%d] is %.4f\n",p,q,P_1_est[p][q]); //前两个正确
		}
	}

	//计算P_2_L=K*R  维度:4*2
	for (p=0;p<4;p++)
	{
		for (q=0;q<2;q++)
		{
			for(r=0;r<2;r++)
			{
				P_2_L[p][q]=P_2_L[p][q]+K[p][r]*R[r][q];			
			}
			//printf("P_2_L[%d][%d] is %.4f\n",p,q,P_2_L[p][q]);//前两个正确
		}
	}

	//计算K_z  维度:2*4
	for (p=0;p<2;p++)
	{
		for (q=0;q<4;q++)
		{
			K_z[p][q]=K[q][p];			
		//	printf("K_z[%d][%d] is %.4f\n",p,q,K_z[p][q]);
		}
	}


	// 计算 P_2=K*R*K'=P_2_L*K'    维度:4*2 * 2*4=4*4
	for (p=0;p<4;p++)
	{
		for (q=0;q<4;q++)
		{		
			P_2[p][q]=P_2_L[p][0]*K_z[0][q]+P_2_L[p][1]*K_z[1][q];
			//printf("P_2[%d][%d] is %.4f\n",p,q,P_2[p][q]); 
		}
	}



	// 计算 P_1_z=(eye(4)-K*H)' =P_1'   维度:4*4
	for (p=0;p<4;p++)
	{
		for (q=0;q<4;q++)
		{			
			P_1_z[p][q]=P_1[q][p];
		}
	}


	// 计算P_est= (eye(4)-K*H)*P_pre *(eye(4)-K*H)'+K*R*K'
	//      =P_1*P_pre*P_1_z +P_2 = P_1_est*P_1_z+P_2  维度:4*4
	for (p=0;p<4;p++)
	{
		for (q=0;q<4;q++)
		{	
			for (r=0;r<4;r++)
			{		 
				P_est[p][q]=P_est[p][q]+P_1_est[p][r]*P_1_z[r][q]+P_2[p][q]/4.0;// 因为r循环了4次,所以要除以4
			}
			//printf("P_est[%d][%d] is %.4f\n",p,q,P_est[p][q]);
		}
	}
	printf("\n\r");
	//printf("P_est[0][0] is %.4f\n",P_est[0][0]);


	/*--------------预测----------------*/ 	
	// 下一时刻状态的预测值  X_pre== F*X_est;   维度:4*1
	// 使用之前清零,保证下一次计算正确
	for (p=0;p<4;p++)
	{
		X_pre[p][0]=0; 
	}
	for (p=0;p<4;p++)
	{
		for (r=0;r<4;r++)
		{
			X_pre[p][0]=X_pre[p][0]+F[p][r]*X_est[r][0]; 
		}
		//printf("X_pre[%d][0] is %.4f\n",p,X_pre[p][0]);
	}	
	


	//预测状态误差自相关矩阵  相当于P(n+1,n) P_pre= F*P_est*F'+Q;  	
	// 计算F*P_est=F_P         维度:4*4
	for (p=0;p<4;p++)
	{
		for (q=0;q<4;q++)
		{
			for (r=0;r<4;r++)
			{
				F_P[p][q]=F_P[p][q]+F[p][r]*P_est[r][q]; 
			}
		}
	}	
	// 计算F'  维度:4*4
	for (p=0;p<4;p++)
	{
		for (q=0;q<4;q++)
		{			
			F_z[p][q]=F[q][p]; 
		}
	}

	//  计算P_pre= F*P_est*F'+Q=F_P*F'+Q;
	// 使用之前清零,保证下一次计算正确
	for (p=0;p<4;p++)
	{
		for (q=0;q<4;q++)
		{
			P_pre[p][q]=0; 
		}
	}
	for (p=0;p<4;p++)
	{
		for (q=0;q<4;q++)
		{
			for (r=0;r<4;r++)
			{
				P_pre[p][q]=P_pre[p][q]+F_P[p][r]*F_z[r][q]+Q[p][q]/4.0;// 因为r循环了4次,所以要除以4
			}
			//printf("P_pre[%d][%d] is %.4f\n",p,q,P_pre[p][q]);
		}
	}




	//将待返回的参数放在结构体
	for (p=0;p<4;p++)
	{
		KEM_back_parameter.X_est[p][0] = X_est[p][0];// 返回状态估计值
		KEM_back_parameter.X_pre[p][0] = X_pre[p][0];// 返回状态预测值
	}

	for (p=0;p<4;p++)
	{
		for (q=0;q<4;q++)
		{
			KEM_back_parameter.P_pre[p][q] = P_pre[p][q];//返回状态估计协方差矩阵的预测值
		}
	}


	return KEM_back_parameter;

}

3 结果对比

在这里插入图片描述
在这里插入图片描述

4 完整工程链接

一维角度跟踪
二维角度跟踪

  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2022-03-08 22:48:16  更:2022-03-08 22:50:47 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/9 17:09:24-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码