IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> GTSAM 学习(一) -> 正文阅读

[数据结构与算法]GTSAM 学习(一)

GTSAM(Georgia Tech Smoothing and Mapping)是基于因子图的C++库,它可以解决slam和sfm的问题,当然它也可以解决简单或者更加复杂的估计问题。

主要由以下三个基本组成部分:

因子图(factor graph):它属于一个二分图,由因子和变量连接而成。

变量(variables):估计问题中的未知随机变量。

因子(factors):非线性因子表示变量之间的约束,在slam中,可能为landmark或者odometry的读数。

第一个简单的例子是单个因子、单个变量执行一个根据先验信息(类似ceres初值)来进行的角度旋转非线性优化。

#include <gtsam/geometry/Rot2.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 
 
using namespace std;
using namespace gtsam;
 
const double degree = M_PI / 180;
 
int main() {
 
  // 先验:测量值,用来构造因子
  Rot2 prior = Rot2::fromAngle(30 * degree);
  prior.print("goal angle");
  // 输入(维度,标准差),得到噪声模型
  noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(1, 1 * degree);
  // Symbol:用来表示待优化参数
  Symbol key('x',1);
  // 构造因子
  PriorFactor<Rot2> factor(key, prior, model);
 
  NonlinearFactorGraph graph;
  graph.push_back(factor);
  graph.print("full graph");
 
  // 创建Values
  Values initial;
  // insert(key,初始值)
  initial.insert(key, Rot2::fromAngle(20 * degree));
  initial.print("initial estimate");
 
  Values result = LevenbergMarquardtOptimizer(graph, initial).optimize();
  result.print("final result");
 
  return 0;
}
cmake_minimum_required(VERSION 2.8)
 
project(SimpleRotation)
 
# 寻找第三方库,使用大小写都可以,这里列举了两种方式
find_package(Boost COMPONENTS thread filesystem date_time system REQUIRED)
FIND_PACKAGE(GTSAM REQUIRED)
 
# 包含第三方库头文件路径,可以使用绝对路径
INCLUDE_DIRECTORIES(${Boost_INCLUDE_DIR})
INCLUDE_DIRECTORIES(${GTSAM_INCLUDE_DIR})
INCLUDE_DIRECTORIES("/usr/include/eigen3")
 
add_executable(${PROJECT_NAME} "SimpleRotation.cpp")
# 链接库
target_link_libraries(${PROJECT_NAME} ${Boost_LIBRARIES} -lgtsam -ltbb)
install(TARGETS ${PROJECT_NAME} RUNTIME DESTINATION bin)

以下是对二维进行的两个因子(位姿因子、回环因子)根据先验initials进行的优化。

#include <gtsam/geometry/Pose2.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
#include <gtsam/nonlinear/Marginals.h>
using namespace std;
using namespace gtsam;
int main(int argc, char** argv) 
{
    NonlinearFactorGraph graph;

    Values initials;
    initials.insert(Symbol('x', 1), Pose2(0.2, -0.3, 0.2));
    initials.insert(Symbol('x', 2), Pose2(5.1, 0.3, -0.1));
    initials.insert(Symbol('x', 3), Pose2(9.9, -0.1, -M_PI_2 - 0.2));
    initials.insert(Symbol('x', 4), Pose2(10.2, -5.0, -M_PI + 0.1));
    initials.insert(Symbol('x', 5), Pose2(5.1, -5.1, M_PI_2 - 0.1));
    initials.print("\nInitial Values:\n"); 
    //固定第一个顶点,在gtsam中相当于添加一个先验因子
    noiseModel::Diagonal::shared_ptr priorModel = noiseModel::Diagonal::Sigmas(Vector3(1.0, 1.0, 0.1));
    graph.add(PriorFactor<Pose2>(Symbol('x', 1), Pose2(0, 0, 0), priorModel));

    //二元位姿因子
    noiseModel::Diagonal::shared_ptr odomModel = noiseModel::Diagonal::Sigmas(Vector3(0.5, 0.5, 0.1));
    graph.add(BetweenFactor<Pose2>(Symbol('x', 1), Symbol('x', 2), Pose2(5, 0, 0), odomModel));
    graph.add(BetweenFactor<Pose2>(Symbol('x', 2), Symbol('x', 3), Pose2(5, 0, -M_PI_2), odomModel));
    graph.add(BetweenFactor<Pose2>(Symbol('x', 3), Symbol('x', 4), Pose2(5, 0, -M_PI_2), odomModel));
    graph.add(BetweenFactor<Pose2>(Symbol('x', 4), Symbol('x', 5), Pose2(5, 0, -M_PI_2), odomModel));

    //二元回环因子
    noiseModel::Diagonal::shared_ptr loopModel = noiseModel::Diagonal::Sigmas(Vector3(0.5, 0.5, 0.1));
    graph.add(BetweenFactor<Pose2>(Symbol('x', 5), Symbol('x', 2), Pose2(5, 0, -M_PI_2), loopModel));
    graph.print("\nFactor Graph:\n"); 


    GaussNewtonParams parameters;
    parameters.setVerbosity("ERROR");
    parameters.setMaxIterations(20);
    parameters.setLinearSolverType("MULTIFRONTAL_QR");
    GaussNewtonOptimizer optimizer(graph, initials, parameters);
    Values results = optimizer.optimize();
    results.print("Final Result:\n");

    Marginals marginals(graph, results);
    cout << "x1 covariance:\n" << marginals.marginalCovariance(Symbol('x', 1)) << endl;
    cout << "x2 covariance:\n" << marginals.marginalCovariance(Symbol('x', 2)) << endl;
    cout << "x3 covariance:\n" << marginals.marginalCovariance(Symbol('x', 3)) << endl;
    cout << "x4 covariance:\n" << marginals.marginalCovariance(Symbol('x', 4)) << endl;
    cout << "x5 covariance:\n" << marginals.marginalCovariance(Symbol('x', 5)) << endl;

    return 0;
}

?¨è?é??¥????è?°

?如果三维位置要使用Rot3(欧拉角和位移);

#include <gtsam/geometry/Rot3.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
#include <gtsam/nonlinear/Marginals.h>
using namespace std;
using namespace gtsam;
int main(int argc, char** argv) 
{
    NonlinearFactorGraph graph;

    Values initials;
    initials.insert(Symbol('x', 1), Pose3(Rot3::RzRyRx(0, 0, 0), Point3(0.1, -0.1, 0)));
    initials.insert(Symbol('x', 2), Pose3(Rot3::RzRyRx(0, 0, 0), Point3(6, 0.1, -1.1)));
    initials.insert(Symbol('x', 3), Pose3(Rot3::RzRyRx(0, 0, 0), Point3(10.1, -0.1, 0.9)));
    initials.insert(Symbol('x', 4), Pose3(Rot3::RzRyRx(0, 0, 0), Point3(10, 5, 0)));
    initials.insert(Symbol('x', 5), Pose3(Rot3::RzRyRx(0, 0, 0), Point3(5.1, 4.9, -0.9)));
    initials.print("\nInitial Values:\n"); 
    //固定第一个顶点,在gtsam中相当于添加一个先验因子
    noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Variances(
          (Vector(6) << 1e-2, 1e-2, M_PI * M_PI, 1e8, 1e8, 1e8).finished()); 
    graph.add(PriorFactor<Pose3>(Symbol('x', 1), Pose3(Rot3::RzRyRx(0, 0, 0), Point3(0, 0, 0)), priorNoise));

    //二元位姿因子
    noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Variances(
          (Vector(6) << 1e-6, 1e-6, 1e-6, 1e-4, 1e-4, 1e-4).finished());
    graph.add(BetweenFactor<Pose3>(Symbol('x', 1), Symbol('x', 2), Pose3(Rot3::RzRyRx(0, 0, 0), Point3(5, 0, -1)), odometryNoise));
    graph.add(BetweenFactor<Pose3>(Symbol('x', 2), Symbol('x', 3), Pose3(Rot3::RzRyRx(0, 0, 0), Point3(5, 0, 2)), odometryNoise));
    graph.add(BetweenFactor<Pose3>(Symbol('x', 3), Symbol('x', 4), Pose3(Rot3::RzRyRx(0, 0, 0), Point3(0, 5, -1)), odometryNoise));
    graph.add(BetweenFactor<Pose3>(Symbol('x', 4), Symbol('x', 5), Pose3(Rot3::RzRyRx(0, 0, 0), Point3(-5, 0, -1)), odometryNoise));

    //二元回环因子
    noiseModel::Diagonal::shared_ptr loopModel = noiseModel::Diagonal::Variances(
          (Vector(6) << 1e-6, 1e-6, 1e-6, 1e-4, 1e-4, 1e-4).finished());
    graph.add(BetweenFactor<Pose3>(Symbol('x', 5), Symbol('x', 2), Pose3(Rot3::RzRyRx(0, 0, 0), Point3(0, -5, 0)), loopModel));
    graph.print("\nFactor Graph:\n"); 


    GaussNewtonParams parameters;
    parameters.setVerbosity("ERROR");
    parameters.setMaxIterations(20);
    parameters.setLinearSolverType("MULTIFRONTAL_QR");
    GaussNewtonOptimizer optimizer(graph, initials, parameters);
    Values results = optimizer.optimize();
    results.print("Final Result:\n");

    Marginals marginals(graph, results);
    cout << "x1 covariance:\n" << marginals.marginalCovariance(Symbol('x', 1)) << endl;
    cout << "x2 covariance:\n" << marginals.marginalCovariance(Symbol('x', 2)) << endl;
    cout << "x3 covariance:\n" << marginals.marginalCovariance(Symbol('x', 3)) << endl;
    cout << "x4 covariance:\n" << marginals.marginalCovariance(Symbol('x', 4)) << endl;
    cout << "x5 covariance:\n" << marginals.marginalCovariance(Symbol('x', 5)) << endl;

    return 0;
}

?

参考:?GTSAM学习::Example(1)SimpleRotation_dieju8330的博客-CSDN博客_gtsam学习

SLAM本质剖析-GTSAM - 古月居

  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2022-03-10 22:50:47  更:2022-03-10 22:55:27 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 13:36:44-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码