原始问题:
在一个字符串中找到最长的回文字符串
什么是回文字符串? aba, abba。
添加任意字符在两边#1#1#2#1#1#进行回文判断。
- 回文直径:以一个位置为中心,扩出来整个串的长度为回文直径
- 回文半径:以一个位置为中心,扩出来半个串长度为回文半径
- 回文数组:对于字符串而言,从0位置开始,一直到最后,新建一个数组,数组中保存对应位置的回文半径。
- 最右回文右边界:所有回文半径中,最靠右的边界,回文右边界只要没更新,记录最早取得此处的回文中心。
Manacher算法的核心在于一个回文数组。根据具体例子来走。解题思路:
- 回文右边界R不包含位置i,此时暴力扩展,直到R包含i。
- i位置在回文有边界内时,知道了回文右边界可以知道回文左边界,对称中心为c,此时关于c做i的对称点i‘,若i‘的回文彻底在c为中心的回文里面,此时i的回文半径和i’的回文半径相同。
- i位置的对称位置i’的回文半径越过了以c为中心的左边范围。(i‘扩出的范围以c为中心的回文没包住,存在一部分在回文直径外面)此时i’的回文半径是i-R。
- 正好i‘的回文半径正好跟左边L相等,此时可以直到i的回文半径大于等于i-R,然后需要判断R后面的位置,重新返回第一步。
- 整个算法的复杂度O(n),虽然第一步和第四步花费时间长,但是1,4都会扩展R,依次变化的过程中,R最多也就是变化到n,所以时间复杂度为O(n)。
Java代码如下:
public static char[] manacherString(String str){
char[] charArr = str.toCharArray();
char[] res = new char[str.length()*2+1];
int index = 0;
for(int i = 0;i != res.length;i++){
res[i] = (i&1) == 0? '#':charArr[index++];
}
return res;
}
public static int maxLcpsLength(String str){
if(str == null || str.length() == 0){
return 0;
}
char[] charArr = manacherString(str);
int[] pArr = new int[charArr.length];
int C = -1;
int R = -1;
int max = Integer.MIN_VALUE;
for(int i = 0;i != charArr.length;i++){
//让至少是回文的区域加入到数组中
pArr[i] =R > i ? Math.min(pArr[2*c-i],R-i):1;
//左边和右边都不越界的情况下。如果相等就继续扩,如果不相对了,就退出
while(i+pArr[i]<charArr.length && i-pArr[i]> -1 ){
if(charArr[i +pArr[i]] == charArr[i-pArr[i]])
pArr[i]++;
else{
break;
}
}
if(i + pArr[i]>R){
R = i+pArr[i];
c = i;
}
max = Math.max(max,pArr[i]);
}
return max-1;
}
|