IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> 稀疏重构算法详解 -> 正文阅读

[数据结构与算法]稀疏重构算法详解

引入

??在室内环境中, 多径信号具有天然的空间稀疏性, 根据压缩感知理论可知, 如果信号是可压缩的或者在某个变换域是稀疏的, 可以采用一个随机测量矩阵将高维信号映射到一个低维空间上, 通过求解优化问题, 以很高的概率重构出原始信号。
??因此,在该理论框架下, 可以通过特定的空间网格划分构造完备的稀疏表达基, 对接收阵列信号进行稀疏化表示, 再利用优化方法得到稀疏空间谱, 这样可以将多径信号的 AOA 估计问题转换为空间谱的稀?重构问题。

稀疏重构算法

??基于稀疏重构实现信号的 A O A \mathrm{AOA} AOA 估计, 首先要构造完备的稀疏表达基, 使得接收阵列信号能够稀疏化表示。对于阵列接收信号模型, 其转向矩阵 A \mathbf{A} A 中每一个转向向量 a ( θ l ) , l = 1 , 2 , … , L \mathbf{a}\left(\theta_{l}\right), l=1,2, \ldots, L a(θl?),l=1,2,,L, 对应着空间中一个入射信号。为了接收阵列信号能够稀疏化表示, 将阵列流型矩阵扩展到整个空间。常采用等角度采样的方式划分空间网格,即 { θ ~ 1 , θ ~ 2 , … , θ ~ N θ } \left\{\tilde{\theta}_{1}, \tilde{\theta}_{2}, \ldots, \tilde{\theta}_{N_{\theta}}\right\} {θ~1?,θ~2?,,θ~Nθ??}, 其中 N θ N_{\theta} Nθ? 为划分空间 网格的个数。此时, 构成新的阵列流型矩阵 A ~ \tilde{\mathbf{A}} A~ 可以表示为阵列信号的完备稀疏表达基, 即
A ~ = [ a ( θ ~ 1 ) , a ( θ ~ 2 ) , … , a ( θ ~ N θ ) ] \widetilde{\mathbf{A}}=\left[\mathbf{a}\left(\tilde{\theta}_{1}\right), \mathbf{a}\left(\tilde{\theta}_{2}\right), \ldots, \mathbf{a}\left(\tilde{\theta}_{N_{\theta}}\right)\right] A =[a(θ~1?),a(θ~2?),,a(θ~Nθ??)]
??在室内环境中, 多径信号的个数会远远小于划分空间网格信号的个数, 即 L ? N θ L \ll N_{\theta} L?Nθ?, 假设每一个等角度采样的空间网格都对应一个信号 s n , n = 1 , 2 , … , N θ s_{n}, n=1,2, \ldots, N_{\theta} sn?,n=1,2,,Nθ?, 接收阵列信号可以稀疏化表示为
h = A ~ s ~ + n \mathbf{h}=\widetilde{A} \widetilde{\boldsymbol{s}}+\mathbf{n} h=A s +n
??式中, s ~ = [ s 1 , s 2 , … , s N θ ] ? \tilde{\mathbf{s}}=\left[s_{1}, s_{2}, \ldots, s_{N_{\theta}}\right]^{\top} s~=[s1?,s2?,,sNθ??]? 为稀疏空间谱信号, n \mathbf{n} n 为信号橾声。
??实际上, 稀疏信号 s ~ \widetilde{\mathbf{s}} s 含 有 L L L 个非零元素, 其所对应转向向量的角度值就是多径人射信号的 AOA 估计, 而其它元素都为零, 如图所示。此时, 空间谱信号 s ~ \widetilde{\mathbf{s}} s 具有很强的稀疏性, 利用稀疏重构算法可以重构出稀疏的空间谱信号 s ~ \widetilde{\mathbf{s}} s , 将信号的 A O A \mathrm{AOA} AOA 估计问题就转化为稀疏信号的重构问题。根据稀疏空间谱 s ~ \widetilde{\mathbf{s}} s { θ ~ 1 , θ ~ 2 , … , θ ~ N } \left\{\tilde{\theta}_{1}, \tilde{\theta}_{2}, \ldots, \tilde{\theta}_{N}\right\} {θ~1?,θ~2?,,θ~N?} 的对应关系确定多径信号的 AOA 估计。
在这里插入图片描述

??压缩感知理论指出, 如果阵列流型矩阵 A ~ \tilde{\mathbf{A}} A~ 满足约束等距性 (Restricted Isometry Property, RIP), 实现 L L L 项稀疏空间谱 s ~ \widetilde{\boldsymbol{s}} s 的精确重构, 可以通过一个组合优化问题求解, 即 ? 0 \ell_{0} ?0? 范数优化问题
min ? ∥ s ~ ∥ 0 ?s.? t . h = A ~ s ~ \begin{aligned} &\min \|\tilde{\mathbf{s}}\|_{0} \\ &\text { s. } t . \quad \mathbf{h}=\widetilde{\mathbf{A}} \widetilde{\mathbf{s}} \end{aligned} ?mins~0??s.?t.h=A s ?
??式中, ∥ s ~ ∥ 0 \|\tilde{\mathbf{s}}\|_{0} s~0? 为稀疏空间谱的 ? 0 \ell_{0} ?0? 范数, 表示稀疏信号 s ~ \tilde{\mathbf{s}} s~ 中非零元素的个数。由统计理论和 组合优化方法可知, 通过选择合适的测量方式和重构算法, 仅需 L + 1 L+1 L+1 次测量就可将 N θ N_{\theta} Nθ? 维空间的 L L L-稀疏信号精确重构, 但是求解上式的非零元素是一个 NP 难问题。当测量矩阵满足 RIP 条件时, 通过 ? 1 \ell_{1} ?1? 范数优化问题代替 ? 0 \ell_{0} ?0? 范数的组合优化问题, 利用线性规划 算法即可求解,
min ? ∥ s ~ ∥ 1 ?s.? t . h = A ~ s ~ \min \|\tilde{\mathbf{s}}\|_{1}\\ \text { s. } t . \quad \mathbf{h}=\tilde{\mathbf{A}} \tilde{\mathbf{s}} mins~1??s.?t.h=A~s~

??其核心思想是将非零元素个数近似等于所有非零元素绝对值的和,然后通过正则化求解凸优化问题,
min ? ∥ h ? A ~ s ~ ∥ 2 2 + κ ∥ s ~ ∥ 1 \min \|\mathbf{h}-\widetilde{\mathbf{A}} \widetilde{\boldsymbol{s}}\|_{2}^{2}+\kappa\|\widetilde{\mathbf{s}}\|_{1} minh?A s 22?+κs 1?
??式中, κ \kappa κ 是正则化系数。利用二阶雉规划(??) (Second-Order Cone Programming, SOCP) 的方法 可以重构出稀疏空间谱信号 s ~ \widetilde{\mathbf{s}} s , 其中的非零元素所对应的等角度空间网格的 角度值就是多径信号的 A O A \mathrm{AOA} AOA 估计。

参考文献

[1]张凌雁. 基于WiFi信道状态信息的室内定位跟踪技术研究[D]. 大连理工大学.

  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2022-03-15 22:50:27  更:2022-03-15 22:55:47 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 12:49:48-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码